Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Mol Biol Evol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913681

RESUMO

Natural proteins are frequently marginally stable, and an increase in environmental temperature can easily lead to unfolding. As a result, protein engineering to improve protein stability is an area of intensive research. Nonetheless, since there is usually a high degree of structural homology between proteins from thermophilic organisms and their mesophilic counterparts, the identification of structural determinants for thermo-adaptation is challenging. Moreover, in many cases, it has become clear that the success of stabilization strategies is often dependent on the evolutionary history of a protein family. In the last few years, the use of ancestral sequence reconstruction (ASR) as a tool for elucidation of the evolutionary history of functional traits of a protein family have gained strength. Here, we used ASR to trace the evolutionary pathways between mesophilic and thermophilic kinases that participate in the biosynthetic pathway of vitamin B1 in bacteria. By combining biophysics approaches, X-ray crystallography, and molecular dynamic simulations, we found that the thermal stability of these enzymes correlate with their kinetic stability, where the highest thermal/kinetic stability is given by an increase in small hydrophobic amino acids that allow a higher number of interatomic hydrophobic contacts, making this type of interaction the main support for stability in this protein architecture. The results highlight the potential benefits of using ASR to explore the evolutionary history of protein sequence and structure to identify traits responsible for the kinetic and thermal stability of any protein architecture.

2.
Arch Biochem Biophys ; 741: 109602, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084804

RESUMO

Although ADP-dependent sugar kinases were first described in archaea, at present, the presence of an ADP-dependent glucokinase (ADP-GK) in mammals is well documented. This enzyme is mainly expressed in hematopoietic lineages and tumor tissues, although its role has remained elusive. Here, we report a detailed kinetic characterization of the human ADP-dependent glucokinase (hADP-GK), addressing the influence of a putative signal peptide for endoplasmic reticulum (ER) destination by characterizing a truncated form. The truncated form revealed no significant impact on the kinetic parameters, showing only a slight increase in the Vmax value, higher metal promiscuity, and the same nucleotide specificity as the full-length enzyme. hADP-GK presents an ordered sequential kinetic mechanism in which MgADP is the first substrate to bind and AMP is the last product released, being the same mechanism described for archaeal ADP-dependent sugar kinases, in agreement with the protein topology. Substrate inhibition by glucose was observed due to sugar binding to nonproductive species. Although Mg2+ is an essential component for kinase activity, it also behaves as a partial mixed-type inhibitor for hADP-GK, mainly by decreasing the MgADP affinity. Regarding its distribution, phylogenetic analysis shows that ADP-GK's are present in a wide diversity of eukaryotic organisms although it is not ubiquitous. Eukaryotic ADP-GKs sequences cluster into two main groups, showing differences in the highly conserved sugar-binding motif reported for archaeal enzymes [NX(N)XD] where a cysteine residue is found instead of asparagine in a significant number of enzymes. Site directed mutagenesis of the cysteine residue by asparagine produces a 6-fold decrease in Vmax, suggesting a role for this residue in the catalytic process, probably by facilitating the proper orientation of the substrate to be phosphorylated.


Assuntos
Asparagina , Cisteína , Humanos , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Glucoquinase/química , Glucose/metabolismo , Cinética , Filogenia , Açúcares
3.
J Biol Chem ; 296: 100219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33839685

RESUMO

ADP-dependent kinases were first described in archaea, although their presence has also been reported in bacteria and eukaryotes (human and mouse). This enzyme family comprises three substrate specificities; specific phosphofructokinases (ADP-PFKs), specific glucokinases (ADP-GKs), and bifunctional enzymes (ADP-PFK/GK). Although many structures are available for members of this family, none exhibits fructose-6-phosphate (F6P) at the active site. Using an ancestral enzyme, we obtain the first structure of an ADP-dependent kinase (AncMsPFK) with F6P at its active site. Key residues for sugar binding and catalysis were identified by alanine scanning, D36 being a critical residue for F6P binding and catalysis. However, this residue hinders glucose binding because its mutation to alanine converts the AncMsPFK enzyme into a specific ADP-GK. Residue K179 is critical for F6P binding, while residues N181 and R212 are also important for this sugar binding, but to a lesser extent. This structure also provides evidence for the requirement of both substrates (sugar and nucleotide) to accomplish the conformational change leading to a closed conformation. This suggests that AncMsPFK mainly populates two states (open and closed) during the catalytic cycle, as reported for specific ADP-PFK. This situation differs from that described for specific ADP-GK enzymes, where each substrate independently causes a sequential domain closure, resulting in three conformational states (open, semiclosed, and closed).


Assuntos
Proteínas Arqueais/química , Frutosefosfatos/química , Glucoquinase/química , Methanosarcinales/química , Fosfofrutoquinases/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Biocatálise , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Frutosefosfatos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucoquinase/genética , Glucoquinase/metabolismo , Cinética , Ligantes , Methanosarcinales/enzimologia , Methanosarcinales/genética , Modelos Moleculares , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
4.
Appl Environ Microbiol ; 88(1): e0184221, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34705547

RESUMO

Polyethylene terephthalate (PET) is one of the most widely used synthetic plastics in the packaging industry, and consequently has become one of the main components of plastic waste found in the environment. However, several microorganisms have been described to encode enzymes that catalyze the depolymerization of PET. While most known PET hydrolases are thermophilic and require reaction temperatures between 60°C and 70°C for an efficient hydrolysis of PET, a partial hydrolysis of amorphous PET at lower temperatures by the polyester hydrolase IsPETase from the mesophilic bacterium Ideonella sakaiensis has also been reported. We show that polyester hydrolases from the Antarctic bacteria Moraxella sp. strain TA144 (Mors1) and Oleispira antarctica RB-8 (OaCut) were able to hydrolyze the aliphatic polyester polycaprolactone as well as the aromatic polyester PET at a reaction temperature of 25°C. Mors1 caused a weight loss of amorphous PET films and thus constitutes a PET-degrading psychrophilic enzyme. Comparative modeling of Mors1 showed that the amino acid composition of its active site resembled both thermophilic and mesophilic PET hydrolases. Lastly, bioinformatic analysis of Antarctic metagenomic samples demonstrated that members of the Moraxellaceae family carry candidate genes coding for further potential psychrophilic PET hydrolases. IMPORTANCE A myriad of consumer products contains polyethylene terephthalate (PET), a plastic that has accumulated as waste in the environment due to its long-term stability and poor waste management. One promising solution is the enzymatic biodegradation of PET, with most known enzymes only catalyzing this process at high temperatures. Here, we bioinformatically identified and biochemically characterized an enzyme from an Antarctic organism that degrades PET at 25°C with similar efficiency to the few PET-degrading enzymes active at moderate temperatures. Reasoning that Antarctica harbors other PET-degrading enzymes, we analyzed available data from Antarctic metagenomic samples and successfully identified other potential enzymes. Our findings contribute to increasing the repertoire of known PET-degrading enzymes that are currently being considered as biocatalysts for the biological recycling of plastic waste.


Assuntos
Hidrolases , Polietilenotereftalatos , Regiões Antárticas , Hidrolases/genética , Hidrólise , Poliésteres , Temperatura
5.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216436

RESUMO

Endoxylanases belonging to family 10 of the glycoside hydrolases (GH10) are versatile in the use of different substrates. Thus, an understanding of the molecular mechanisms underlying substrate specificities could be very useful in the engineering of GH10 endoxylanases for biotechnological purposes. Herein, we analyzed XynA, an endoxylanase that contains a (ß/α)8-barrel domain and an intrinsically disordered region (IDR) of 29 amino acids at its amino end. Enzyme activity assays revealed that the elimination of the IDR resulted in a mutant enzyme (XynAΔ29) in which two new activities emerged: the ability to release xylose from xylan, and the ability to hydrolyze p-nitrophenyl-ß-d-xylopyranoside (pNPXyl), a substrate that wild-type enzyme cannot hydrolyze. Circular dichroism and tryptophan fluorescence quenching by acrylamide showed changes in secondary structure and increased flexibility of XynAΔ29. Molecular dynamics simulations revealed that the emergence of the pNPXyl-hydrolyzing activity correlated with a dynamic behavior not previously observed in GH10 endoxylanases: a hinge-bending motion of two symmetric regions within the (ß/α)8-barrel domain, whose hinge point is the active cleft. The hinge-bending motion is more intense in XynAΔ29 than in XynA and promotes the formation of a wider active site that allows the accommodation and hydrolysis of pNPXyl. Our results open new avenues for the study of the relationship between IDRs, dynamics and activity of endoxylanases, and other enzymes containing (ß/α)8-barrel domain.


Assuntos
Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Catálise , Domínio Catalítico/fisiologia , Hidrólise , Especificidade por Substrato/fisiologia , Xilanos/metabolismo , Xilose/metabolismo
6.
Arch Biochem Biophys ; 688: 108389, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32387178

RESUMO

The hydroxymethylpyrimidine phosphate kinases (HMPPK) encoded by the thiD gene are involved in the thiamine biosynthesis pathway, can perform two consecutive phosphorylations of 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) and are found in thermophilic and mesophilic bacteria, but only a few characterizations of mesophilic enzymes are available. The presence of another homolog enzyme (pyridoxal kinase) that can only catalyze the first phosphorylation of HMP and encoded by pdxK gene, has hampered a precise annotation in this enzyme family. Here we report the kinetic characterization of two HMPPK with structure available, the mesophilic and thermophilic enzyme from Salmonella typhimurium (StHMPPK) and Thermus thermophilus (TtHMPPK), respectively. Also, given their high structural similarity, we have analyzed the structural determinants of protein thermal stability in these enzymes by molecular dynamics simulation. The results show that pyridoxal kinases (PLK) from gram-positive bacteria (PLK/HMPPK-like enzymes) constitute a phylogenetically separate group from the canonical PLK, but closely related to the HMPPK, so the PLK/HMPPK-like and canonical PLK, both encoded by pdxK genes, are different and must be annotated distinctly. The kinetic characterization of StHMPPK and TtHMPPK, shows that they perform double phosphorylation on HMP, both enzymes are specific for HMP, not using pyridoxal-like molecules as substrates and their kinetic mechanism involves the formation of a ternary complex. Molecular dynamics simulation shows that StHMPPK and TtHMPPK have striking differences in their conformational flexibility, which can be correlated with the hydrophobic packing and electrostatic interaction network given mainly by salt bridge bonds, but interestingly not by the number of hydrogen bond interactions as reported for other thermophilic enzymes. ENZYMES: EC 2.7.1.49, EC 2.7.4.7, EC 2.7.1.35, EC 2.7.1.50.


Assuntos
Proteínas de Bactérias/química , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Proteínas de Bactérias/isolamento & purificação , Ensaios Enzimáticos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Simulação de Dinâmica Molecular , Fosfotransferases (Aceptor do Grupo Fosfato)/isolamento & purificação , Conformação Proteica , Estabilidade Proteica , Pirimidinas/química , Salmonella typhimurium/enzimologia , Eletricidade Estática , Especificidade por Substrato , Thermus thermophilus/enzimologia
7.
J Biol Chem ; 292(38): 15598-15610, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28726643

RESUMO

One central goal in molecular evolution is to pinpoint the mechanisms and evolutionary forces that cause an enzyme to change its substrate specificity; however, these processes remain largely unexplored. Using the glycolytic ADP-dependent kinases of archaea, including the orders Thermococcales, Methanosarcinales, and Methanococcales, as a model and employing an approach involving paleoenzymology, evolutionary statistics, and protein structural analysis, we could track changes in substrate specificity during ADP-dependent kinase evolution along with the structural determinants of these changes. To do so, we studied five key resurrected ancestral enzymes as well as their extant counterparts. We found that a major shift in function from a bifunctional ancestor that could phosphorylate either glucose or fructose 6-phosphate (fructose-6-P) as a substrate to a fructose 6-P-specific enzyme was started by a single amino acid substitution resulting in negative selection with a ground-state mode against glucose and a subsequent 1,600-fold change in specificity of the ancestral protein. This change rendered the residual phosphorylation of glucose a promiscuous and physiologically irrelevant activity, highlighting how promiscuity may be an evolutionary vestige of ancestral enzyme activities, which have been eliminated over time. We also could reconstruct the evolutionary history of substrate utilization by using an evolutionary model of discrete binary characters, indicating that substrate uses can be discretely lost or acquired during enzyme evolution. These findings exemplify how negative selection and subtle enzyme changes can lead to major evolutionary shifts in function, which can subsequently generate important adaptive advantages, for example, in improving glycolytic efficiency in Thermococcales.


Assuntos
Complexos de ATP Sintetase/metabolismo , Evolução Molecular , Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/genética , Sequência de Aminoácidos , Euryarchaeota/enzimologia , Frutosefosfatos/metabolismo , Glucose/metabolismo , Cinética , Modelos Moleculares , Mutação , Filogenia , Conformação Proteica , Especificidade por Substrato
8.
Arch Biochem Biophys ; 633: 85-92, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28919057

RESUMO

The genome of Methanosarcinales organisms presents both ADP-dependent glucokinase and phosphofructokinase genes. However, Methanococcoides burtonii has a truncate glucokinase gene with a large deletion at the C-terminal, where the catalytic GXGD motif is located. Characterization of its phosphofructokinase annotated protein shows that is a bifunctional enzyme able to supply the absence of the glucokinase activity. Moreover, kinetic analyses of the phosphofructokinase annotated enzyme from, Methanohalobium evestigatum demonstrated that this enzyme is also bifunctional. The high conservation of the active site residues of all the enzymes from the order Methanosarcinales suggest that they should be bifunctional, as was previously reported for the ADP-dependent kinases from Methanococcales, highlighting the redundancy of the glucokinase activity in this archaeal group. The presence of active glycolytic enzymes would be important when glycogen storage of these organisms needs to be degraded to be used as energy source. Kinetic and structural information allows us to establish a substrate specificity signature that identifies specific GK or PFK, and bifunctional enzymes in this family.


Assuntos
Difosfato de Adenosina/química , Proteínas Arqueais/química , Glucoquinase/química , Methanosarcinales/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glucoquinase/genética , Glucoquinase/metabolismo , Cinética , Methanosarcinales/classificação , Methanosarcinales/genética , Modelos Moleculares , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
9.
Biochem Biophys Res Commun ; 479(3): 496-501, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27659707

RESUMO

Niemann-Pick disease (NPD) type A and B are recessive hereditary disorders caused by deficiency in acid sphingomyelinase (ASM). The p.Ala359Asp mutation has been described in several patients but its functional and structural effects in the protein are unknown. In order to characterize this mutation, we modeled the three-dimensional ASM structure using the recent available crystal of the mammalian ASM as a template. We found that the p.Ala359Asp mutation is localized in the hydrophobic core and far from the sphingomyelin binding site. However, energy function calculations using statistical potentials indicate that the mutation causes a decrease in ASM stability. Therefore, we investigated the functional effect of the p.Ala359Asp mutation in ASM expression, secretion, localization and activity in human fibroblasts. We found a 3.8% residual ASM activity compared to the wild-type enzyme, without changes in the other parameters evaluated. These results support the hypothesis that the p.Ala359Asp mutation causes structural alterations in the hydrophobic environment where ASM is located, decreasing its enzymatic activity. A similar effect was observed in other previously described NPDB mutations located outside the active site of the enzyme. This work shows the first full size ASM mutant model describe at date, providing a complete analysis of the structural and functional effects of the p.Ala359Asp mutation over the stability and activity of the enzyme.


Assuntos
Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/metabolismo , Alanina/química , Ácido Aspártico/química , Domínio Catalítico , Fibroblastos/metabolismo , Humanos , Substâncias Macromoleculares , Microscopia de Fluorescência , Conformação Molecular , Mutação , Doenças de Niemann-Pick/metabolismo , Domínios Proteicos , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/genética , Eletricidade Estática
10.
Biophys J ; 108(9): 2350-61, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25954892

RESUMO

Escherichia coli phosphofructokinase-2 (Pfk-2) is an obligate homodimer that follows a highly cooperative three-state folding mechanism N2 ↔ 2I ↔ 2U. The strong coupling between dissociation and unfolding is a consequence of the structural features of its interface: a bimolecular domain formed by intertwining of the small domain of each subunit into a flattened ß-barrel. Although isolated monomers of E. coli Pfk-2 have been observed by modification of the environment (changes in temperature, addition of chaotropic agents), no isolated subunits in native conditions have been obtained. Based on in silico estimations of the change in free energy and the local energetic frustration upon binding, we engineered a single-point mutant to destabilize the interface of Pfk-2. This mutant, L93A, is an inactive monomer at protein concentrations below 30 µM, as determined by analytical ultracentrifugation, dynamic light scattering, size exclusion chromatography, small-angle x-ray scattering, and enzyme kinetics. Active dimer formation can be induced by increasing the protein concentration and by addition of its substrate fructose-6-phosphate. Chemical and thermal unfolding of the L93A monomer followed by circular dichroism and dynamic light scattering suggest that it unfolds noncooperatively and that the isolated subunit is partially unstructured and marginally stable. The detailed structural features of the L93A monomer and the F6P-induced dimer were ascertained by high-resolution hydrogen/deuterium exchange mass spectrometry. Our results show that the isolated subunit has overall higher solvent accessibility than the native dimer, with the exception of residues 240-309. These residues correspond to most of the ß-meander module and show the same extent of deuterium uptake as the native dimer. Our results support the idea that the hydrophobic core of the isolated monomer of Pfk-2 is solvent-penetrated in native conditions and that the ß-meander module is not affected by monomerizing mutations.


Assuntos
Proteínas de Escherichia coli/química , Fosfofrutoquinase-2/química , Dobramento de Proteína , Multimerização Proteica , Sequência de Aminoácidos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Mutação , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
11.
Immunology ; 146(4): 582-94, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26331349

RESUMO

The CD73 ectonucleotidase catalyses the hydrolysis of AMP to adenosine, an immunosuppressive molecule. Recent evidence has demonstrated that this ectonucleotidase is up-regulated in T helper type 17 cells when generated in the presence of transforming growth factor-ß (TGF-ß), and hence CD73 expression is related to the acquisition of immunosuppressive potential by these cells. TGF-ß is also able to induce CD73 expression in CD8(+) T cells but the function of this ectonucleotidase in CD8(+) T cells is still unknown. Here, we show that Tc17 cells present high levels of the CD73 ectonucleotidase and produce adenosine; however, they do not suppress the proliferation of CD4(+) T cells. Interestingly, we report that adenosine signalling through A2A receptor favours interleukin-17 production and the expression of stem cell-associated transcription factors such as tcf-7 and lef-1 but restrains the acquisition of Tc1-related effector molecules such as interferon-γ and Granzyme B by Tc17 cells. Within the tumour microenvironment, CD73 is highly expressed in CD62L(+) CD127(+) CD8(+) T cells (memory T cells) and is down-regulated in GZMB(+) KLRG1(+) CD8(+) T cells (terminally differentiated T cells), demonstrating that CD73 is expressed in memory/naive cells and is down-regulated during differentiation. These data reveal a novel function of CD73 ectonucleotidase in arresting CD8(+) T-cell differentiation and support the idea that CD73-driven adenosine production by Tc17 cells may promote stem cell-like properties in Tc17 cells.


Assuntos
5'-Nucleotidase/metabolismo , Adenosina/biossíntese , Linfócitos T CD8-Positivos/metabolismo , Células-Tronco/metabolismo , Subpopulações de Linfócitos T/metabolismo , Monofosfato de Adenosina/metabolismo , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Citocinas/biossíntese , Regulação para Baixo , Memória Imunológica , Imunofenotipagem , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Transgênicos , Fenótipo , Células-Tronco/citologia , Células-Tronco/imunologia , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia
12.
Biometals ; 28(2): 401-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25749547

RESUMO

Human ribokinase (RK) is a member of the ribokinase family, and is the first enzyme responsible for D-ribose metabolism, since D-ribose must first be converted into D-ribose-5-phosphate to be further metabolized and incorporated into ATP or other high energy phosphorylated compounds. Despite its biological importance, RK is poorly characterized in eukaryotes and especially in human. We have conducted a comprehensive study involving catalytic and regulatory features of the human enzyme, focusing on divalent and monovalent metal regulatory effects. Mg(2+), Mn(2+), and Co(2+) support enzyme activity although at different rates, with Mn(2+) being the most effective. Analysis of the divalent cation requirement in the wild type enzyme demonstrates that in addition to that chelated by the nucleotide substrate, an activating cation (either Mn(2+) or Mg(2+)) is required to obtain full activity of the enzyme, with the affinity for both divalent cations being almost the same (4 and 8 µM respectively). Besides metal cation activation, inhibition of the enzyme activity by increasing concentrations of Mn(2+) but not Mg(2+) is observed. Also the role of residues N199 and E202 of the highly conserved NXXE motif present at the active site has been evaluated regarding Mg(2+) and phosphate binding. K(+) (but not Na(+)) and PO4 (3-) activate the wild type enzyme, whereas the N199L and E202L mutants display a dramatic decrease in kcat and require higher free Mg(2+) concentrations than the wild type enzyme to reach maximal activity, and the activating effect of PO4 (3-) is lost. The results demonstrated a complex regulation of the human ribokinase activity where residues Asn199 and Glu202 play an important role.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/química , Motivos de Aminoácidos , Substituição de Aminoácidos , Biocatálise , Sequência Conservada , Humanos , Cinética , Magnésio/química , Manganês/química , Fosfatos/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Cloreto de Potássio/química , Compostos de Potássio/química , Cloreto de Sódio/química
13.
Structure ; 32(6): 812-823.e4, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38513659

RESUMO

Mollusk hemocyanins, among the largest known proteins, are used as immunostimulants in biomedical and clinical applications. The hemocyanin of the Chilean gastropod Concholepas concholepas (CCH) exhibits unique properties, which makes it safe and effective for human immunotherapy, as observed in animal models of bladder cancer and melanoma, and dendritical cell vaccine trials. Despite its potential, the structure and amino acid sequence of CCH remain unknown. This study reports two sequence fragments of CCH, representing three complete functional units (FUs). We also determined the high-resolution (1.5 Å) X-ray crystal structure of an "FU-g type" from the CCHB subunit. This structure enables in-depth analysis of chemical interactions at the copper-binding center and unveils an unusual, truncated N-glycosylation pattern. These features are linked to eliciting more robust immunological responses in animals, offering insights into CCH's enhanced immunostimulatory properties and opening new avenues for its potential applications in biomedical research and therapies.


Assuntos
Sequência de Aminoácidos , Hemocianinas , Modelos Moleculares , Hemocianinas/química , Hemocianinas/imunologia , Animais , Cristalografia por Raios X , Glicosilação , Sítios de Ligação , Gastrópodes/imunologia , Gastrópodes/química , Cobre/química , Moluscos/imunologia , Ligação Proteica
14.
Biophys J ; 104(10): 2254-63, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23708365

RESUMO

Phosphofructokinase-2 is a dimeric enzyme that undergoes cold denaturation following a highly cooperative N2 2I mechanism with dimer dissociation and formation of an expanded monomeric intermediate. Here, we use intrinsic fluorescence of a tryptophan located at the dimer interface to show that dimer dissociation occurs slowly, over several hours. We then use hydrogen-deuterium exchange mass spectrometry experiments, performed by taking time points over the cold denaturation process, to measure amide exchange throughout the protein during approach to the cold denatured state. As expected, a peptide corresponding to the dimer interface became more solvent exposed over time at 3°C; unexpectedly, amide exchange increased throughout the protein over time at 3°C. The rate of increase in amide exchange over time at 3°C was the same for each region and equaled the rate of dimer dissociation measured by tryptophan fluorescence, suggesting that dimer dissociation and formation of the cold denatured intermediate occur without appreciable buildup of folded monomer. The observation that throughout the protein amide exchange increases as phosphofructokinase-2 cold denatures provides experimental evidence for theoretical predictions that cold denaturation primarily occurs by solvent penetration into the hydrophobic core of proteins in a sequence-independent manner.


Assuntos
Temperatura Baixa , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Fosfofrutoquinase-2/química , Desnaturação Proteica , Solventes/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fosfofrutoquinase-2/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Solventes/metabolismo
15.
Biophys J ; 105(1): 185-93, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23823238

RESUMO

The presence of a regulatory site for monovalent cations that affects the conformation of the MgATP-binding pocket leading to enzyme activation has been demonstrated for ribokinases. This site is selective toward the ionic radius of the monovalent cation, accepting those larger than Na(+). Phosphofructokinase-2 (Pfk-2) from Escherichia coli is homologous to ribokinase, but unlike other ribokinase family members, presents an additional site for the nucleotide that negatively regulates its enzymatic activity. In this work, we show the effect of monovalent cations on the kinetic parameters of Pfk-2 together with its three-dimensional structure determined by x-ray diffraction in the presence of K(+) or Cs(+). Kinetic characterization of the enzyme shows that K(+) and Na(+) alter neither the kcat nor the KM values for fructose-6-P or MgATP. However, the presence of K(+) (but not Na(+)) enhances the allosteric inhibition induced by MgATP. Moreover, binding experiments show that K(+) (but not Na(+)) increases the affinity of MgATP in a saturable fashion. In agreement with the biochemical data, the crystal structure of Pfk-2 obtained in the presence of MgATP shows a cation-binding site at the conserved position predicted for the ribokinase family of proteins. This site is adjacent to the MgATP allosteric binding site and is only observed in the presence of Cs(+) or K(+). These results indicate that binding of the monovalent metal ions indirectly influences the allosteric site of Pfk-2 by increasing its affinity for MgATP with no alteration in the conformation of residues present at the catalytic site.


Assuntos
Trifosfato de Adenosina/farmacologia , Sequência Conservada , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Domínio Catalítico , Cátions Monovalentes/metabolismo , Inibidores Enzimáticos/metabolismo , Simulação de Dinâmica Molecular , Especificidade por Substrato , Termodinâmica
17.
Biometals ; 26(5): 805-12, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23860900

RESUMO

Pyridoxal 5'-phosphate is the active form of vitamin B6 and its deficiency is directly related with several human disorders, which make human pyridoxal kinase (hPLK) an important pharmacologic target. In spite of this, a carefully kinetic characterization of hPLK including the main species that regulates the enzymatic activity is at date missing. Here we analyse the catalytic and regulatory mechanisms of hPLK as a function of a precise determination of the species involved in metal-nucleotide equilibriums and describe new regulatory mechanisms for this enzyme. hPLK activity is supported by several metals, being Zn(2+) the most effective, although the magnitude of the effect observed is highly dependent on the relative concentrations of metal and nucleotide used. The true substrate for the reaction catalyzed by hPLK is the metal nucleotide complex, while ATP(4-) and HATP(3-) did not affect the activity. The enzyme presents substrate inhibition by both pyridoxal (PL) and ZnATP(2-), although the latter behaves as a weakly inhibitor. Our study also established, for the first time, a dual role for free Zn(2+); as an activator at low concentrations (19 µM optimal concentration) and as a potent inhibitor with a IC50 of 37 µM. These results highlighted the importance of an accurate estimation of the actual concentration of the species involved in metal-nucleotide equilibriums in order to obtain reliable values for the kinetic parameters, and for determine the true regulators of the PLK activity. They also help to explain the dissimilar kinetic parameters reported in the literature for this enzyme.


Assuntos
Biocatálise , Nucleotídeos/metabolismo , Piridoxal Quinase/metabolismo , Zinco/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Cinética , Nucleotídeos/química , Nucleotídeos/farmacologia , Piridoxal Quinase/antagonistas & inibidores , Especificidade da Espécie , Relação Estrutura-Atividade , Zinco/química , Zinco/farmacologia
18.
Biophys J ; 103(10): 2187-94, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23200052

RESUMO

Folding studies have been focused mainly on small, single-domain proteins or isolated single domains of larger proteins. However, most of the proteins present in biological systems are composed of multiple domains, and to date, the principles that underlie its folding remain elusive. The unfolding of Pfk-2 induced by GdnHCl has been described by highly cooperative three-state equilibrium (N(2)↔2I↔2U). This is characterized by a strong coupling between the subunits' tertiary structure and the integrity of the dimer interface because "I" represents an unstructured and expanded monomeric intermediate. Here we report that cold and heat unfolding of Pfk-2 resembles the N(2)↔2I step of chemically induced unfolding. Moreover, cold unfolding appears to be as cooperative as that induced chemically and even more so than its heat-unfolding counterpart. Because Pfk-2 is a large homodimer of 66 kDa with a complex topology consisting of well-defined domains, these results are somewhat unexpected considering that cold unfolding has been described as a special kind of perturbation that decouples the cooperative unfolding of several proteins.


Assuntos
Temperatura Baixa , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Temperatura Alta , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/metabolismo , Desdobramento de Proteína , Dicroísmo Circular , Estabilidade Enzimática/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Guanidina/farmacologia , Luz , Desnaturação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Espalhamento de Radiação
19.
FEBS J ; 289(23): 7519-7536, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35717557

RESUMO

Methanogenic archaea have received attention due to their potential use in biotechnological applications such as methane production, so their metabolism and regulation are topics of special interest. When growing in a nutrient-rich medium, these organisms exhibit gluconeogenic metabolism; however, under starvation conditions, they turn to glycolytic metabolism. To date, no regulatory mechanism has been described for this gluconeogenic/glycolytic metabolic switch. Here, we report that adenosine monophosphate (AMP) activates both enzymatic activities of the bifunctional adenosine diphosphate (ADP)-dependent phosphofructokinase/glucokinase from Methanococcus maripaludis (MmPFK/GK). To understand this phenomenon, we performed a comprehensive kinetic characterisation, including determination of the kinetics, substrate inhibition and AMP activation mechanism of this enzyme. We determined that MmPFK/GK has an ordered-sequential mechanism, in which MgADP is the first substrate to bind and AMP is the last product released. The enzyme also displays substrate inhibition by both sugar substrates; we determined that this inhibition occurs through the formation of catalytically nonproductive enzyme complexes caused by sugar binding. For both activities, the AMP activation mechanism occurs primarily through incremental changes in the affinity for the sugar substrate, with this effect being higher in the GK than in the PFK activity. Interestingly, due to the increase in the sugar substrate affinity caused by AMP, an enhancement in the sugar substrate inhibition effect was also observed for both activities, which can be explained by an increase in sugar binding leading to the formation of dead-end complexes. These results shed light on the regulatory mechanisms of methanogenic archaeal sugar metabolism, a phenomenon that has been largely unexplored.


Assuntos
Mathanococcus , Fosfofrutoquinases , Difosfato de Adenosina , Monofosfato de Adenosina , Mathanococcus/genética , Açúcares
20.
Arch Biochem Biophys ; 505(1): 60-6, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20887711

RESUMO

The reaction catalyzed by E. coli Pfk-2 presents a dual-cation requirement. In addition to that chelated by the nucleotide substrate, an activating cation is required to obtain full activity of the enzyme. Only Mn(2+) and Mg(2+) can fulfill this role binding to the same activating site but the affinity for Mn(2+) is 13-fold higher compared to that of Mg(2+). The role of the E190 residue, present in the highly conserved motif NXXE involved in Mg(2+) binding, is also evaluated in this behavior. The E190Q mutation drastically diminishes the kinetic affinity of this site for both cations. However, binding studies of free Mn(2+) and metal-Mant-ATP complex through EPR and FRET experiments between the ATP analog and Trp88, demonstrated that Mn(2+) as well as the metal-nucleotide complex bind with the same affinity to the wild type and E190Q mutant Pfk-2. These results suggest that this residue exert its role mainly kinetically, probably stabilizing the transition state and that the geometry of metal binding to E190 residue may be crucial to determine the catalytic competence.


Assuntos
Escherichia coli/enzimologia , Magnésio/metabolismo , Manganês/metabolismo , Fosfofrutoquinase-2/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Cinética , Magnésio/química , Manganês/química , Mutação , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA