Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Psychiatry ; 24(5): 757-771, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29302076

RESUMO

Schizophrenia is highly heritable, yet its underlying pathophysiology remains largely unknown. Among the most well-replicated findings in neurobiological studies of schizophrenia are deficits in myelination and white matter integrity; however, direct etiological genetic and cellular evidence has thus far been lacking. Here, we implement a family-based approach for genetic discovery in schizophrenia combined with functional analysis using induced pluripotent stem cells (iPSCs). We observed familial segregation of two rare missense mutations in Chondroitin Sulfate Proteoglycan 4 (CSPG4) (c.391G > A [p.A131T], MAF 7.79 × 10-5 and c.2702T > G [p.V901G], MAF 2.51 × 10-3). The CSPG4A131T mutation was absent from the Swedish Schizophrenia Exome Sequencing Study (2536 cases, 2543 controls), while the CSPG4V901G mutation was nominally enriched in cases (11 cases vs. 3 controls, P = 0.026, OR 3.77, 95% CI 1.05-13.52). CSPG4/NG2 is a hallmark protein of oligodendrocyte progenitor cells (OPCs). iPSC-derived OPCs from CSPG4A131T mutation carriers exhibited abnormal post-translational processing (P = 0.029), subcellular localization of mutant NG2 (P = 0.007), as well as aberrant cellular morphology (P = 3.0 × 10-8), viability (P = 8.9 × 10-7), and myelination potential (P = 0.038). Moreover, transfection of healthy non-carrier sibling OPCs confirmed a pathogenic effect on cell survival of both the CSPG4A131T (P = 0.006) and CSPG4V901G (P = 3.4 × 10-4) mutations. Finally, in vivo diffusion tensor imaging of CSPG4A131T mutation carriers demonstrated a reduction of brain white matter integrity compared to unaffected sibling and matched general population controls (P = 2.2 × 10-5). Together, our findings provide a convergence of genetic and functional evidence to implicate OPC dysfunction as a candidate pathophysiological mechanism of familial schizophrenia.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas de Membrana/genética , Células Precursoras de Oligodendrócitos/metabolismo , Esquizofrenia/genética , Adulto , Antígenos/genética , Diferenciação Celular/fisiologia , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Imagem de Tensor de Difusão , Família , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Mutação/genética , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/metabolismo , Linhagem , Proteoglicanas/genética , Esquizofrenia/metabolismo , Substância Branca/metabolismo
2.
PLoS Genet ; 7(1): e1002001, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21298085

RESUMO

In somatic cells of female placental mammals, one of the two X chromosomes is transcriptionally silenced to accomplish an equal dose of X-encoded gene products in males and females. Initiation of random X chromosome inactivation (XCI) is thought to be regulated by X-encoded activators and autosomally encoded suppressors controlling Xist. Spreading of Xist RNA leads to silencing of the X chromosome in cis. Here, we demonstrate that the dose dependent X-encoded XCI activator RNF12/RLIM acts in trans and activates Xist. We did not find evidence for RNF12-mediated regulation of XCI through Tsix or the Xist intron 1 region, which are both known to be involved in inhibition of Xist. In addition, we found that Xist intron 1, which contains a pluripotency factor binding site, is not required for suppression of Xist in undifferentiated ES cells. Analysis of female Rnf12⁻/⁻ knockout ES cells showed that RNF12 is essential for initiation of XCI and is mainly involved in the regulation of Xist. We conclude that RNF12 is an indispensable factor in up-regulation of Xist transcription, thereby leading to initiation of random XCI.


Assuntos
Inativação Gênica , RNA não Traduzido/genética , Proteínas Repressoras/fisiologia , Inativação do Cromossomo X/genética , Animais , Células-Tronco Embrionárias/metabolismo , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização in Situ Fluorescente , Íntrons/genética , Masculino , Camundongos , Proteína Homeobox Nanog , RNA Longo não Codificante , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases
3.
Front Endocrinol (Lausanne) ; 12: 723750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539576

RESUMO

Genetic defects in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) result in MCT8 deficiency. This disorder is characterized by a combination of severe intellectual and motor disability, caused by decreased cerebral thyroid hormone signalling, and a chronic thyrotoxic state in peripheral tissues, caused by exposure to elevated serum T3 concentrations. In particular, MCT8 plays a crucial role in the transport of thyroid hormone across the blood-brain-barrier. The life expectancy of patients with MCT8 deficiency is strongly impaired. Absence of head control and being underweight at a young age, which are considered proxies of the severity of the neurocognitive and peripheral phenotype, respectively, are associated with higher mortality rate. The thyroid hormone analogue triiodothyroacetic acid is able to effectively and safely ameliorate the peripheral thyrotoxicosis; its effect on the neurocognitive phenotype is currently under investigation. Other possible therapies are at a pre-clinical stage. This review provides an overview of the current understanding of the physiological role of MCT8 and the pathophysiology, key clinical characteristics and developing treatment options for MCT8 deficiency.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/terapia , Hipotonia Muscular/genética , Hipotonia Muscular/terapia , Atrofia Muscular/genética , Atrofia Muscular/terapia , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/mortalidade , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Transportadores de Ácidos Monocarboxílicos/genética , Hipotonia Muscular/mortalidade , Hipotonia Muscular/patologia , Atrofia Muscular/mortalidade , Atrofia Muscular/patologia , Fenótipo , Transdução de Sinais/genética , Simportadores/genética , Terapias em Estudo/métodos , Terapias em Estudo/tendências
4.
Stem Cell Reports ; 10(2): 655-672, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29337119

RESUMO

Scarce access to primary samples and lack of efficient protocols to generate oligodendrocytes (OLs) from human pluripotent stem cells (hPSCs) are hampering our understanding of OL biology and the development of novel therapies. Here, we demonstrate that overexpression of the transcription factor SOX10 is sufficient to generate surface antigen O4-positive (O4+) and myelin basic protein-positive OLs from hPSCs in only 22 days, including from patients with multiple sclerosis or amyotrophic lateral sclerosis. The SOX10-induced O4+ population resembles primary human OLs at the transcriptome level and can myelinate neurons in vivo. Using in vitro OL-neuron co-cultures, myelination of neurons by OLs can also be demonstrated, which can be adapted to a high-throughput screening format to test the response of pro-myelinating drugs. In conclusion, we provide an approach to generate OLs in a very rapid and efficient manner, which can be used for disease modeling, drug discovery efforts, and potentially for therapeutic OL transplantation.


Assuntos
Diferenciação Celular/genética , Oligodendroglia/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXE/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Antígenos de Superfície/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Proteína Básica da Mielina/genética , Neurônios/patologia , Neurônios/transplante , Oligodendroglia/citologia , Oligodendroglia/transplante , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/transplante , Transcriptoma/genética
5.
Stem Cell Reports ; 3(4): 548-55, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25358783

RESUMO

Silencing of the FMR1 gene leads to fragile X syndrome, the most common cause of inherited intellectual disability. To study the epigenetic modifications of the FMR1 gene during silencing in time, we used fibroblasts and induced pluripotent stem cells (iPSCs) of an unmethylated full mutation (uFM) individual with normal intelligence. The uFM fibroblast line carried an unmethylated FMR1 promoter region and expressed normal to slightly increased FMR1 mRNA levels. The FMR1 expression in the uFM line corresponds with the increased H3 acetylation and H3K4 methylation in combination with a reduced H3K9 methylation. After reprogramming, the FMR1 promoter region was methylated in all uFM iPSC clones. Two clones were analyzed further and showed a lack of FMR1 expression, whereas the presence of specific histone modifications also indicated a repressed FMR1 promoter. In conclusion, these findings demonstrate that the standard reprogramming procedure leads to epigenetic silencing of the fully mutated FMR1 gene.


Assuntos
Metilação de DNA , Fibroblastos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Inativação Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Adolescente , Animais , Estudos de Casos e Controles , Linhagem Celular , Reprogramação Celular , Criança , Pré-Escolar , Feminino , Fibroblastos/citologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Cell Rep ; 3(3): 905-18, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23523354

RESUMO

X chromosome inactivation (XCI) is a dynamically regulated developmental process with inactivation and reactivation accompanying the loss and gain of pluripotency, respectively. A functional relationship between pluripotency and lack of XCI has been suggested, whereby pluripotency transcription factors repress the master regulator of XCI, the noncoding transcript Xist, by binding to its first intron (intron 1). To test this model, we have generated intron 1 mutant embryonic stem cells (ESCs) and two independent mouse models. We found that Xist's repression in ESCs, its transcriptional upregulation upon differentiation, and its silencing upon reprogramming to pluripotency are not dependent on intron 1. Although we observed subtle effects of intron 1 deletion on the randomness of XCI and in the absence of the antisense transcript Tsix in differentiating ESCs, these have little relevance in vivo because mutant mice do not deviate from Mendelian ratios of allele transmission. Altogether, our findings demonstrate that intron 1 is dispensable for the developmental dynamics of Xist expression.


Assuntos
Íntrons , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X , Animais , Diferenciação Celular , Reprogramação Celular , Células-Tronco Embrionárias/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA