Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0200223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289108

RESUMO

Foot-and-mouth disease virus (FMDV) remains a challenge for cloven-hooved animals. The currently licensed FMDV vaccines induce neutralizing antibody (NAb)-mediated protection but show defects in the early protection. Dendritic cell (DC) vaccines have shown great potency in inducing rapid T-cell immunity in humans and mice. Whether DC vaccination could enhance early protection against FMDV has not been elaborately explored in domestic pigs. In this study, we employed DC vaccination as an experimental approach to study the roles of cellular immunity in the early protection against FMDV in pigs. Autologous DCs were differentiated from the periphery blood mononuclear cells of each pig, pulsed with inactivated FMDV (iFMDV-DC) and treated with LPS, and then injected into the original pigs. The cellular immune responses and protective efficacy elicited by the iFMDV-DC were examined by multicolor flow cytometry and tested by FMDV challenge. The results showed that autologous iFMDV-DC immunization induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells (CTLs), high NAb titers, compared to the inactivated FMDV vaccine, and accelerated the development of memory CD4 and CD8 T cells, which was concomitantly associated with early protection against FMDV virulent strain in pigs. Such early protection was associated with the rapid proliferation of secondary T-cell response after challenge and significantly contributed by secondary CD8 effector memory T cells. These results demonstrated that rapid induction of cellular immunity through DC immunization is important for improving early protection against FMDV. Enhancing cytotoxic CD8+ T cells may facilitate the development of more effective FMDV vaccines.IMPORTANCEAlthough the currently licensed FMDV vaccines provide NAb-mediated protection, they have defects in early immune protection, especially in pigs. In this study, we demonstrated that autologous swine DC immunization augmented the cellular immune response and induced an early protective response against FMDV in pigs. This approach induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells, high NAb titers, and rapid development of memory CD4 and CD8 T cells. Importantly, the early protection conferred by this DC immunization is more associated with secondary CD8+ T response rather than NAbs. Our findings highlighted the importance of enhancing cytotoxic CD8+ T cells in early protection to FMDV in addition to Th1 response and identifying a strategy or adjuvant comparable to the DC vaccine might be a future direction for improving the current FMDV vaccines.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Humanos , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/fisiologia , Suínos , Vacinação
2.
J Virol ; 98(8): e0064524, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39012141

RESUMO

Porcine deltacoronavirus (PDCoV) is an important enteric coronavirus that has caused enormous economic losses in the pig industry worldwide. However, no commercial vaccine is currently available. Therefore, developing a safe and efficacious live-attenuated vaccine candidate is urgently needed. In this study, the PDCoV strain CH/XJYN/2016 was continuously passaged in LLC-PK cells until passage 240, and the virus growth kinetics in cell culture, pathogenicity in neonatal piglets, transcriptome differences after LLC-PK infection, changes in the functional characteristics of the spike (S) protein in the high- and low-passage strains, genetic variation of the virus genome, resistance to pepsin and acid, and protective effects of this strain when used as a live-attenuated vaccine were examined. The results of animal experiments demonstrated that the virulent PDCoV strain CH/XJYN/2016 was completely attenuated and not pathogenic in piglets following serial cell passage. Genome sequence analysis showed that amino acid mutations in nonstructural proteins were mainly concentrated in Nsp3, structural protein mutations were mainly concentrated in the S protein, and the N, M, and E genes were conserved. Transcriptome comparison revealed that compared with negative control cells, P10-infected LLC-PK cells had the most differentially expressed genes (DEGs), while P0 and P240 had the least number of DEGs. Analysis of trypsin dependence and related structural differences revealed that the P10 S protein interacted more strongly with trypsin and that the P120 S protein interacted more strongly with the APN receptor. Moreover, the infectivity of P240 was not affected by pepsin but was significantly decreased after exposure to low pH. Furthermore, the P240-based live-attenuated vaccine provided complete protection to piglets against the challenge of virulent PDCoV. In conclusion, we showed that a PDCoV strain was completely attenuated through serial passaging in vitro. These results provide insights into the potential molecular mechanisms of PDCoV attenuation and the development of a promising live-attenuated PDCoV vaccine.IMPORTANCEPorcine deltacoronavirus (PDCoV) is one of the most important enteropathogenic pathogens that cause diarrhea in pigs of various ages, especially in suckling piglets, and causes enormous economic losses in the global commercial pork industry. There are currently no effective measures to prevent and control PDCoV. As reported in previous porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus studies, inactivated vaccines usually elicit less robust protective immune responses than live-attenuated vaccines in native sows. Therefore, identifying potential attenuation mechanisms, gene evolution, pathogenicity differences during PDCoV passaging, and immunogenicity as live-attenuated vaccines is important for elucidating the mechanism of attenuation and developing safe and effective vaccines for virulent PDCoV strains. In this study, we demonstrated that the virulence of the PDCoV strain CH/XJYN/2016 was completely attenuated following serial cell passaging in vitro, and changes in the biological characteristics and protection efficacy of the strain were evaluated. Our results help elucidate the mechanism of PDCoV attenuation and support the development of appropriate designs for the study of live PDCoV vaccines.


Assuntos
Infecções por Coronavirus , Deltacoronavirus , Genoma Viral , Inoculações Seriadas , Doenças dos Suínos , Vacinas Atenuadas , Animais , Suínos , Deltacoronavirus/genética , Deltacoronavirus/patogenicidade , Vacinas Atenuadas/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/veterinária , Doenças dos Suínos/virologia , Virulência , Vacinas Virais/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Linhagem Celular , Mutação
3.
J Gen Virol ; 105(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39136113

RESUMO

Porcine deltacoronavirus (PDCoV), an enteropathogenic coronavirus, causes severe watery diarrhoea, dehydration and high mortality in piglets, which has the potential for cross-species transmission in recent years. Growth factor receptor-bound protein 2 (Grb2) is a bridging protein that can couple cell surface receptors with intracellular signal transduction events. Here, we investigated the reciprocal regulation between Grb2 and PDCoV. It is found that Grb2 regulates PDCoV infection and promotes IFN-ß production through activating Raf/MEK/ERK/STAT3 pathway signalling in PDCoV-infected swine testis cells to suppress viral replication. PDCoV N is capable of interacting with Grb2. The proline-rich motifs in the N- or C-terminal region of PDCoV N were critical for the interaction between PDCoV-N and Grb2. Except for Deltacoronavirus PDCoV N, the Alphacoronavirus PEDV N protein could interact with Grb2 and affect the regulation of PEDV replication, while the N protein of Betacoronavirus PHEV and Gammacoronavirus AIBV could not interact with Grb2. PDCoV N promotes Grb2 degradation by K48- and K63-linked ubiquitin-proteasome pathways. Overexpression of PDCoV N impaired the Grb2-mediated activated effect on the Raf/MEK/ERK/STAT3 signal pathway. Thus, our study reveals a novel mechanism of how host protein Grb2 protein regulates viral replication and how PDCoV N escaped natural immunity by interacting with Grb2.


Assuntos
Proteína Adaptadora GRB2 , Proteínas do Nucleocapsídeo , Replicação Viral , Animais , Suínos , Proteína Adaptadora GRB2/metabolismo , Proteína Adaptadora GRB2/genética , Proteínas do Nucleocapsídeo/metabolismo , Proteínas do Nucleocapsídeo/genética , Doenças dos Suínos/virologia , Doenças dos Suínos/metabolismo , Deltacoronavirus/metabolismo , Deltacoronavirus/genética , Sistema de Sinalização das MAP Quinases , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Humanos , Transdução de Sinais , Linhagem Celular , Quinases raf/metabolismo , Quinases raf/genética , Células HEK293
4.
J Virol ; 97(8): e0018123, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37565750

RESUMO

Vacuolar protein sorting 28 (Vps28), a component of the ESCRT-I (endosomal sorting complex required for transport I), plays an important role in the pathogen life cycle. Here, we investigated the reciprocal regulation between Vps28 and the foot-and-mouth disease virus (FMDV). Overexpression of Vps28 decreased FMDV replication. On the contrary, the knockdown of Vps28 increased viral replication. Subsequently, the mechanistic study showed that Vps28 destabilized the replication complex (RC) by associating with 3A rather than 2C protein. In addition, Vps28 targeted FMDV VP0, VP1, and VP3 for degradation to inhibit viral replication. To counteract this, FMDV utilized tactics to restrict Vps28 to promote viral replication. FMDV degraded Vps28 mainly through the ubiquitin-proteasome pathway. Additional data demonstrated that 2B and 3A proteins recruited E3 ubiquitin ligase tripartite motif-containing protein 21 to degrade Vps28 at Lys58 and Lys25, respectively, and FMDV 3Cpro degraded Vps28 through autophagy and its protease activity. Meantime, the 3Cpro-mediated Vps28 degradation principally alleviated the ability to inhibit viral propagation. Intriguingly, we also demonstrated that the N-terminal and C-terminal domains of Vps28 were responsible for the suppression of FMDV replication, which suggested the elaborated counteraction between FMDV and Vps28. Collectively, our results first investigate the role of ESCRTs in host defense against picornavirus and unveil underlying strategies utilized by FMDV to evade degradation machinery for triumphant propagation. IMPORTANCE ESCRT machinery plays positive roles in virus entry, replication, and budding. However, little has been reported on its negative regulation effects during viral infection. Here, we uncovered the novel roles of ESCRT-I subunit Vps28 on FMDV replication. The data indicated that Vps28 destabilized the RC and impaired viral structural proteins VP0, VP1, and VP3 to inhibit viral replication. To counteract this, FMDV hijacked intracellular protein degradation pathways to downregulate Vps28 expression and thus promoted viral replication. Our findings provide insights into how ESCRT regulates pathogen life cycles and elucidate additional information regarding FMDV counteraction of host antiviral activity.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/metabolismo , Proteínas Virais/metabolismo , Transdução de Sinais , Transporte Proteico , Replicação Viral/fisiologia
5.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203765

RESUMO

Classical swine fever virus (CSFV) is a highly contagious pathogen causing significant economic losses in the swine industry. Conventional inactivated or attenuated live vaccines for classical swine fever (CSF) are effective but face biosafety concerns and cannot distinguish vaccinated animals from those infected with the field virus, complicating CSF eradication efforts. It is noteworthy that nanoparticle (NP)-based vaccines resemble natural viruses in size and antigen structure, and offer an alternative tool to circumvent these limitations. In this study, we developed an innovative vaccine delivery scaffold utilizing self-assembled mi3 NPs, which form stable structures carrying the CSFV E2 glycoprotein. The expressed yeast E2-fused protein (E2-mi3 NPs) exhibited robust thermostability (25 to 70 °C) and long-term storage stability at room temperature (25 °C). Interestingly, E2-mi3 NPs made with this technology elicited enhanced antigen uptake by RAW264.7 cells. In a rabbit model, the E2-mi3 NP vaccine against CSFV markedly increased CSFV-specific neutralizing antibody titers. Importantly, it conferred complete protection in rabbits challenged with the C-strain of CSFV. Furthermore, we also found that the E2-mi3 NP vaccines triggered stronger cellular (T-lymphocyte proliferation, CD8+ T-lymphocytes, IFN-γ, IL-2, and IL-12p70) and humoral (CSFV-specific neutralizing antibodies, CD4+ T-lymphocytes, and IL-4) immune responses in pigs than the E2 vaccines. To sum up, these structure-based, self-assembled mi3 NPs provide valuable insights for novel antiviral strategies against the constantly infectious agents.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Lagomorpha , Nanopartículas , Animais , Coelhos , Suínos , Nanovacinas , Peste Suína Clássica/prevenção & controle , Vacinas Atenuadas , Proteínas Fúngicas
6.
J Fluoresc ; 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37561367

RESUMO

Widely utilized in the chemical industry and agriculture, hydrazine is easily absorbed by living things and can cause physical harm when in touch for an extended period of time. As a result, a novel cinnamaldehyde chalcone C5 was produced by Friedel Crafts process and aldol condensation reaction. Triphenylamine was used as the raw material for hydrazine determination in both reactions. Chalcone C5 exhibits significant AIE behavior in a mixed mixture of ethanol and water in addition to having great selectivity and a low detection limit (0.119 nm) for hydrazine. The solvent effect test revealed a linear relationship between the Stokes shift of C5 in the solvent and the rise in solvent orientation polarization. It is important to note that C5 is not harmful to MCF-7 cells, mouse kidney cells, or pig kidney cells. Furthermore, research on cell imaging has demonstrated that probe C5 may be utilized to image the fluorescence of hydrazine in active MCF-7 cells.

7.
J Virol ; 95(13): e0023821, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853964

RESUMO

Nucleolin (NCL), a stress-responsive RNA-binding protein, has been implicated in the translation of internal ribosome entry site (IRES)-containing mRNAs, which encode proteins involved in cell proliferation, carcinogenesis, and viral infection (type I IRESs). However, the details of the mechanisms by which NCL participates in IRES-driven translation have not hitherto been described. Here, we identified NCL as a protein that interacts with the IRES of foot-and-mouth disease virus (FMDV), which is a type II IRES. We also mapped the interactive regions within FMDV IRES and NCL in vitro. We found that NCL serves as a substantial regulator of FMDV IRES-driven translation but not of bulk cellular or vesicular stomatitis virus cap-dependent translation. NCL also modulates the translation of and infection by Seneca Valley virus (type III-like IRES) and classical swine fever virus (type III IRES), which suggests that its function is conserved in unrelated IRES-containing viruses. We also show that NCL affects viral replication by directly regulating the production of viral proteins and indirectly regulating FMDV RNA synthesis. Importantly, we observed that the cytoplasmic relocalization of NCL during FMDV infection is a substantial step for viral IRES-driven translation and that NCL specifically promotes the initiation phase of the translation process by recruiting translation initiation complexes to viral IRES. Finally, the functional importance of NCL in FMDV pathogenicity was confirmed in vivo. Taken together, our findings demonstrate a specific function for NCL in selective mRNA translation and identify a target for the development of a broad-spectrum class of antiviral interventions. IMPORTANCE FMDV usurps the cellular translation machinery to initiate viral protein synthesis via a mechanism driven by IRES elements. It allows the virus to shut down bulk cellular translation, while providing an advantage for its own gene expression. With limited coding capacity in its own genome, FMDV has evolved a mechanism to hijack host proteins to promote the recruitment of the host translation machinery, a process that is still not well understood. Here, we identified nucleolin (NCL) as a positive regulator of the IRES-driven translation of FMDV. Our study supports a model in which NCL relocalizes from the nucleus to the cytoplasm during the course of FMDV infection, where the cytoplasmic NCL promotes FMDV IRES-driven translation by bridging the translation initiation complexes with viral IRES. Our study demonstrates a previously uncharacterized role of NCL in the translation initiation of IRES-containing viruses, with important implications for the development of broad antiviral interventions.


Assuntos
Vírus da Febre Aftosa/genética , Regulação Viral da Expressão Gênica/genética , Sítios Internos de Entrada Ribossomal/genética , Iniciação Traducional da Cadeia Peptídica/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Linhagem Celular , Proliferação de Células/genética , Chlorocebus aethiops , Vírus da Febre Suína Clássica/genética , Cricetinae , Vírus da Febre Aftosa/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Picornaviridae/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Suínos , Células Vero , Replicação Viral/genética , Nucleolina
8.
J Virol ; 95(16): e0017721, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34011545

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious viral disease affecting cloven-hoofed animals that causes a significant economic burden globally. Vaccination is the most effective FMD control strategy. However, FMD virus (FMDV) particles are prone to dissociate when appropriate physical or chemical conditions are unavailable, such as an incomplete cold chain. Such degraded vaccines result in compromised herd vaccination. Therefore, thermostable FMD particles are needed for use in vaccines. This study generated thermostable FMDV mutants (M3 and M10) by serial passages at high temperature, subsequent amplification, and purification. Both mutants contained an alanine-to-threonine mutation at position 13 in VP1 (A1013T), although M3 contained 3 additional mutations. The selected mutants showed improved stability and immunogenicity in neutralizing antibody titers, compared with the wild-type (wt) virus. The sequencing analysis and cryo-electron microscopy showed that the mutation of alanine to threonine at the 13th amino acid in the VP1 protein (A1013T) is critical for the capsid stability of FMDV. Virus-like particles containing A1013T (VLPA1013T) also showed significantly improved stability to heat treatment. This study demonstrated that Thr at the 13th amino acid of VP1 could stabilize the capsid of FMDV. Our findings will facilitate the development of a stable vaccine against FMDV serotype O. IMPORTANCE Foot-and-mouth disease (FMD) serotype O is one of the global epidemic serotypes and causes significant economic loss. Vaccination plays a key role in the prevention and control of FMD. However, the success of vaccination mainly depends on the quality of the vaccine. Here, the thermostable FMD virus (FMDV) mutants (M3 and M10) were selected through thermal screening at high temperatures with improved stability and immunogenicity compared with the wild-type virus. The results of multisequence alignment and cryo-electron microscopy (cryo-EM) analysis showed that the Thr substitution at the 13th amino acid in the VP1 protein is critical for the capsid stability of FMDV. For thermolabile type O FMDV, this major discovery will aid the development of its thermostable vaccine.


Assuntos
Proteínas do Capsídeo/imunologia , Capsídeo/imunologia , Vírus da Febre Aftosa/imunologia , Vacinas Virais/imunologia , Substituição de Aminoácidos , Animais , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Cobaias , Temperatura Alta , Imunogenicidade da Vacina , Mutação , Estabilidade Proteica , Sorogrupo , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Virologia
9.
Nanomedicine ; 42: 102541, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35181525

RESUMO

Virus-like particles (VLPs), a kind of superior subunit vaccine, are assembled from the viral structural proteins with similar capsids to viruses. However, the efficiency of cell uptake is not satisfactory. We prepared flower-like mesoporous silica nanoparticles (SiNPs) with large pore channels and interior cavities to solve the problem. The highly loaded VLPs-SiNPs composites not only enhanced the stability of VLPs, but also delivered antigen to cells and improved the cellular uptake efficiency. Compared with naked VLPs, mice intramuscularly immunized with the VLPs-SiNPs composite induced higher specific antibodies, greater lymphocyte activation and higher level of cytokine secretion. Moreover, the VLPs-SiNPs composite as vaccine also promoted mucosal immune response through intranasal immune pathway. Therefore, the VLPs-SiNPs enable to induce strong cellular, humoral, and slight mucosal immune response through different immunization routes. These results are potentially useful for vaccine formulations and may provide further reference for vaccine design and delivery systems.


Assuntos
Nanopartículas , Vacinas de Partículas Semelhantes a Vírus , Animais , Anticorpos Antivirais , Imunidade nas Mucosas , Imunização/métodos , Camundongos , Dióxido de Silício
10.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31619563

RESUMO

Internal ribosome entry site (IRES)-driven translation is a common strategy among positive-sense, single-stranded RNA viruses for bypassing the host cell requirement of a 5' cap structure. In the current study, we identified the ribosomal protein L13 (RPL13) as a critical regulator of IRES-driven translation of foot-and-mouth disease virus (FMDV) but found that it is not essential for cellular global translation. RPL13 is also a determinant for translation and infection of Seneca Valley virus (SVV) and classical swine fever virus (CSFV), and this suggests that its function may also be conserved in unrelated IRES-containing viruses. We further showed that depletion of DEAD box helicase DDX3 disrupts binding of RPL13 to the FMDV IRES, whereas the reduction in RPL13 expression impairs the ability of DDX3 to promote IRES-driven translation directly. DDX3 cooperates with RPL13 to support the assembly of 80S ribosomes for optimal translation initiation of viral mRNA. Finally, we demonstrated that DDX3 affects the recruitment of the eukaryotic initiation factor eIF3 subunits e and j to the viral IRES. This work provides the first connection between DDX3 and eIF3e/j and recognition of the role of RPL13 in modulating viral IRES-dependent translation. This previously uncharacterized process may be involved in selective mRNA translation.IMPORTANCE Accumulating evidence has unveiled the roles of ribosomal proteins (RPs) belonging to the large 60S subunit in regulating selective translation of specific mRNAs. The translation specificity of the large-subunit RPs in this process is thought provoking, given the role they play canonically in catalyzing peptide bond formation. Here, we have identified the ribosomal protein L13 (RPL13) as a critical regulator of IRES-driven translation during FMDV infection. Our study supports a model whereby the FMDV IRESs recruit helicase DDX3 recognizing RPL13 to facilitate IRES-driven translation, with the assistance of eIF3e and eIF3j. A better understanding of these specific interactions surrounding IRES-mediated translation initiation could have important implications for the selective translation of viral mRNA and thus for the development of effective prevention of viral infection.


Assuntos
RNA Helicases DEAD-box/metabolismo , Vírus da Febre Aftosa/metabolismo , Sítios Internos de Entrada Ribossomal , Iniciação Traducional da Cadeia Peptídica , Proteínas Ribossômicas/metabolismo , Proteínas Virais/biossíntese , Animais , Chlorocebus aethiops , Cricetinae , RNA Helicases DEAD-box/genética , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Vírus da Febre Aftosa/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Suínos , Células Vero , Proteínas Virais/genética
11.
J Immunol ; 203(2): 429-440, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31167774

RESUMO

Foot-and-mouth disease virus (FMDV) is highly infectious and causes a major plague in animal farming. Unfolded protein response is one of the major cellular responses to pathogenic infections, which performs a crucial role in cell survival, apoptosis, and antiviral innate immune response. In this study, we showed that FMDV infection activated two unfolded protein response branches (PERK-eIF2α and ATF6 signaling) in both baby hamster kidney cells (BHK-21) and porcine kidney (PK-15) cells, whereas it suppressed the IRE1α-XBP1 signaling by decreasing IRE1α level. Further study revealed IRE1α signaling as an important antiviral innate immune mechanism against FMDV. Sec62, the transport protein, was greatly decreased at the late stages of FMDV infection. By overexpression and knockdown study, we also found that the expression of Sec62 was positively involved in the levels of IRE1α and RIG-I and subsequent activation of downstream antiviral signaling pathways in FMDV-infected PK-15 cells. Taken together, our study demonstrates that Sec62 is an important antiviral factor that upregulates IRE1α-RIG-I-dependent antiviral innate immune responses, and FMDV evades antiviral host defense mechanism by downregulating Sec62-IRE1α/RIG-I.


Assuntos
Antivirais/imunologia , Proliferação de Células/fisiologia , Vírus da Febre Aftosa/imunologia , Transdução de Sinais/imunologia , Proteínas Virais/imunologia , Replicação Viral/imunologia , Animais , Linhagem Celular , Cricetinae , Endorribonucleases , Imunidade Inata/imunologia , Proteínas de Membrana Transportadoras/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Receptores de Superfície Celular/imunologia , Suínos , Resposta a Proteínas não Dobradas/imunologia
12.
Nanomedicine ; 33: 102358, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33484882

RESUMO

Virus-like particle (VLP) vaccines have become one of the dominant vaccine candidates for foot-and-mouth disease (FMD). To further enhance the immunogenicity of VLP vaccines, gold nanocages (AuNCs) were selected as an adjuvant for the vaccine. Our experiments demonstrated that AuNCs had little biotoxicity in vivo and in vitro and improved the uptake of VLP in BHK-21 and RAW264.7 cell lines. The VLP-AuNCs activated DCs mainly through toll-like receptor 4 (TLR4) and promoted the secretion of IL-6, IL-1ß, and TNF-α. The conjugation of VLP and AuNCs triggered a strong immune response against FMD virus (FMDV) in mice and guinea pigs. The VLP-AuNCs significantly enhanced the proliferation of CD8+ T cells (P < 0.05) and the secretion of cellular immune-related cytokines (IFN-γ, P < 0.05; IL-12p70, P < 0.01) compared with VLP. The present study demonstrated that AuNCs, as a great potential adjuvant for FMDV VLP vaccines, significantly enhance the immune response.


Assuntos
Adjuvantes Imunológicos/química , Portadores de Fármacos/química , Febre Aftosa/prevenção & controle , Ouro/química , Nanopartículas Metálicas/química , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas Virais/química , Adjuvantes Imunológicos/farmacologia , Animais , Melhoramento Biomédico , Linfócitos T CD8-Positivos , Permeabilidade da Membrana Celular , Proliferação de Células , Citocinas/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Vírus da Febre Aftosa , Cobaias , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Células RAW 264.7 , Vacinas de Partículas Semelhantes a Vírus/farmacologia , Vacinas Virais/farmacologia
13.
Microb Pathog ; 143: 104130, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32165331

RESUMO

Foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects cloven-hoofed animals. Virus-like particles (VLPs) can induce a robust immune response and deliver DNA and small molecules. In this study, a VLP-harboring pcDNA3.1/P12A3C plasmid was generated, and the protective immune response was characterized. Guinea pigs were injected with VLPs, naked DNA vaccine, DNA-loaded VLPs, or phosphate-buffered saline twice subcutaneously at four-week intervals. Results demonstrated that the VLPs protected the naked DNA from DNase degeneration and delivered the DNA into the cells in vitro. The DNA-loaded VLPs and the VLPs alone induced a similar level of specific antibodies (P > 0.05) except at 49 dpv (P < 0.05). The difference in interferon-γ was consistent with that in specific antibodies. The levels of neutralizing antibodies induced by the DNA-loaded VLPs were significantly higher than those of other samples (P < 0.01). Similarly, the lymphocyte proliferation by using DNA-loaded VLPs was significantly higher than those using other formulas after booster immunization. Vaccination with DNA-loaded VLPs provided higher protection (100%) against viral challenge compared with vaccination with VLPs (75%) and DNA vaccine (25%). This study suggested that VLPs can be used as a delivery carrier for DNA vaccine. In turn, the DNA vaccine can enhance the immune response and prolong the serological duration of the VLP vaccine. This phenomenon contributes in providing complete protection against the FMDV challenge in guinea pigs and can be valuable in exploring novel nonreplicating vaccines and controlling FMD in endemic countries worldwide.


Assuntos
DNA Viral/administração & dosagem , Vírus da Febre Aftosa , Febre Aftosa/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/uso terapêutico , Vacinas Virais/uso terapêutico , Animais , DNA Viral/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Cobaias , Testes de Neutralização , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas Virais/administração & dosagem
14.
Mol Cell Probes ; 53: 101643, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32768439

RESUMO

Porcine vesicular disease caused by Senecavirus A (SVA) is a newly emerging disease in many countries. Based on clinical signs only, it is very challenging to distinguish SVA infection from other similar diseases, such as foot and mouth disease, swine vesicular disease, and vesicular stomatitis. Therefore, it is crucial to establish a detection assay for the clinical diagnosis of SVA infection. In this study, a pair of specific primers were designed based on the highly conserved L/VP4 gene sequence of SVA. The established SYBR green I-based quantitative reverse transcription polymerase chain reaction (qRT-PCR) method was used to detect SVA nucleic acids in clinical samples. The limit of detection SVA nucleic acids by qRT-PCR was 6.4 × 101 copies/µL, which was significantly more sensitive than that by gel electrophoresis of 6.4 × 103 copes/µL. This assay was specific and had no cross-reaction with other seven swine viruses. Using SYBR green I-based qRT-PCR, the SVA positive rates in experimental animal samples and field samples were 67.60% (96/142) and 80% (24/30) respectively. The results demonstrate that SYBR green I-based qRT-PCR is a rapid and specific method for the clinical diagnosis and epidemiological investigation of related vesicular diseases caused by SVA.


Assuntos
Benzotiazóis/química , Proteínas do Capsídeo/genética , Diaminas/química , Picornaviridae/isolamento & purificação , Quinolinas/química , Doença Vesicular Suína/diagnóstico , Animais , Limite de Detecção , Picornaviridae/genética , Infecções por Picornaviridae/diagnóstico , Infecções por Picornaviridae/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Doenças dos Suínos/virologia , Doença Vesicular Suína/virologia
15.
RNA Biol ; 17(3): 335-349, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31840571

RESUMO

Foot-and-mouth disease virus (FMDV) is a positive-strand RNA virus of the family Picornaviridae. Early studies show that some viruses of Picornaviridae, such as EMCV and EV71, induce NLRP3 inflammasome activation. Our current study demonstrates that FMDV induces the secretion of caspase-1 and interleukin 1 beta (IL-1ß), as well as activates the NLRP3 inflammasome in a dose- and time-dependent manner. Meanwhile, NLRP3 inflammasome can suppress FMDV replication during virus infection. Both FMDV RNA and viroporin 2B stimulate NLRP3 inflammasome activation. FMDV RNA triggers NLRP3 inflammasome through p-NF-κB/p65 pathway not dependent on RIG-I inflammasome. FMDV 2B activates NLRP3 inflammasome through elevation of intracellular ion, but not dependent on mitochondrial reactive oxygen species (ROS) and lysosomal cathepsin B. It further demonstrates that 2B viroporin activates NLRP3 inflammasome and induces IL-1ß in mice, which enhances the specific immune response against FMDV as an ideal self-adjuvant for FMD VLPs vaccine in guinea pigs. The results reveal a series of regulations between NLRP3 inflammasome complex and FMDV. Amino acids 140-145 of 2B is essential for forming an ion channel. By mutating the amino acid and changing the hydrophobic properties, the helical transmembrane region of the viroporin 2B is altered, so that the 2B is insufficient to trigger the activation of NLRP3 inflammasome. This study demonstrates the functions of FMDV RNA and 2B viroporin activate NLRP3 inflammasome and provides some useful information for the development of FMD vaccine self-adjuvant, which is also helpful for the establishment of effective prevention strategies by targeting NLRP3 inflammasome.


Assuntos
Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Feminino , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Cobaias , Interações Hospedeiro-Patógeno/fisiologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Células RAW 264.7 , RNA Viral/metabolismo , Proteínas Viroporinas/química , Proteínas Viroporinas/metabolismo
16.
J Med Virol ; 91(6): 941-948, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30701562

RESUMO

Foot-and-mouth disease (FMD) is an acute and febrile infectious disease, which can cause great economic losses. Virus-like particles (VLPs) as an advantageous antigen can induce significant specific immune response. To improve immunity of VLPs, especially, make it induce persistent immune response, the hollow mesoporous silica nanoparticles (HMSNs) as a potential nano-adjuvant were synthesized and loaded the FMD virus (FMDV) VLPs. They were injected into guinea pigs and the specific immune response was detected. The results confirmed that HMSNs/VLPs can induce persistent humoral immunity with high-level antibody titer for more than three months. HMSNs also improve the T-lymphocyte proliferation and IFN-γ induced by FMDV VLPs, and provides the ideal protection against FMDV challenge. These consequences indicated that HMSNs were good protein delivery vehicle and potential nano-adjuvant of vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antivirais/sangue , Febre Aftosa/prevenção & controle , Nanopartículas/administração & dosagem , Dióxido de Silício/administração & dosagem , Vacinas Virais/imunologia , Adjuvantes Imunológicos/química , Animais , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Febre Aftosa/imunologia , Vírus da Febre Aftosa , Cobaias , Imunidade Humoral , Nanopartículas/química , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/administração & dosagem
17.
Anal Bioanal Chem ; 411(17): 3929-3939, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31119347

RESUMO

The morpholine (ML) group can be used as a targeting unit for lysosomes. Here, a novel turn-off fluorescence probe for the highly selective imaging of peroxynitrite (ONOO-) produced by the endogenous stimulation of lysosomes in living cells is presented. The probe, denoted ML-NAP-DPPEA, comprises ML and 2-(diphenylphosphino)ethylamine (DPPE) groups attached to the fluorophore naphthalimide (NAP). ML-NAP-DPPEA shows excellent properties, including high selectivity for ONOO-, low cytotoxicity, and no interference, leading to low detection limits (17.6 nM). In the presence of ONOO-, the secondary amine group (NH) is oxidized to an electron-withdrawing group (HN → O), which quenches the fluorescence of ML-NAP-DPPEA. This intracellular lysosomal imaging technique was tested, and the results pointed to its potential use as a probe for studying the biological function and pathological effects of ONOO- in subcellular structure. Graphical abstract.


Assuntos
Corantes Fluorescentes/química , Lisossomos/metabolismo , Naftalimidas/química , Ácido Peroxinitroso/metabolismo , Células HeLa , Humanos , Limite de Detecção , Análise Espectral/métodos
18.
Appl Microbiol Biotechnol ; 103(7): 3015-3024, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30783719

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious disease that affects all susceptible cloven-hoofed animals, resulting in considerable economic losses to animal industries worldwide. Numerous categories of enzyme-linked immunosorbent assays (ELISA) have been developed and widely used to evaluate herd immunity. Manufacturing inactivated FMD virus (FMDV) as a diagnostic antigen requires a facility with a high level of biosafety, but this requirement raises concern on viral leakage. In our previous study, bacterium-original FMD virus-like particles (VLPs) resemble the authentic FMDV and induce protective immunity against homologous viral challenges, thereby demonstrating that they are sufficiently safe without limitations on biosafety facilities and easily prepared. Herein, we developed a competitive ELISA (cELISA) based on FMDV-VLPs as a diagnostic antigen to evaluate herd immunity. The criterion of this cELISA was determined by detecting panels of positive sera with different antibody titers and negative sera. The working parameter of cELISA was optimized, and samples with a percentage inhibition of ≥ 50% were considered positive. The specificity of cELISA to test 277 serum samples with various antibody titers was 100%, and the sensitivity reached 96%. The coincidence rates of cELISA with a VDPro® FMDV and a PrioCHECK® FMDV type O antibody ELISA kit were 97.8% and 98.2%, respectively. Repeatability tests demonstrated that the coefficients of variation within and between runs were less than 7% and 14%, respectively. Our data demonstrated that cELISA based on bacterium-original VLPs had high specificity, sensitivity, and reproducibility. The cELISA could also be used for evaluating vaccination herd immunity effects, especially in developing countries.


Assuntos
Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Vírus da Febre Aftosa/imunologia , Febre Aftosa/diagnóstico , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Bovinos , Imunidade Coletiva , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Sorogrupo , Ovinos , Suínos
19.
Can J Microbiol ; 64(2): 155-166, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29253356

RESUMO

The innate immune system acts as the first line of defense against invasion by bacterial and viral pathogens. The role of macrophages in innate immune responses to foot-and-mouth disease virus (FMDV) is poorly understood. To determine the mechanism underlying activation of innate immunity after FMDV infection in macrophages, we performed FMDV infection in mouse macrophage RAW 264.7 cells and found that FMDV serotype O infection induced a cytopathic effect. We then evaluated the gene expression profile in macrophage RAW 264.7 cells after FMDV infection using systematic microarray analysis. Gene ontology annotation and enrichment analysis revealed that FMDV promoted expression in a group of genes that are enriched in innate immune response and inflammatory response processes. Further research demonstrated that FMDV serotype O infection enhanced NF-κB, Toll-like, and RIG-I-like receptor signaling pathways and proteins expression and increased transcription and expression of a series of cytokines and interferons, as proved by qRT-PCR, Western blot, ELISA, and dual-luciferase reporter assay. Our study concluded that FMDV infection triggers the innate immune response in macrophages after activation of multiple innate immune pathway receptors and proteins by FMDV serotype O, resulting in activation and secretion of a series of cytokines and interferons.


Assuntos
Vírus da Febre Aftosa/imunologia , Febre Aftosa/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Animais , Linhagem Celular , Citocinas/genética , Citocinas/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Interferons/genética , Interferons/imunologia , Camundongos , Células RAW 264.7 , Transdução de Sinais/genética , Transcriptoma
20.
J Gen Virol ; 98(11): 2725-2730, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29068273

RESUMO

CD59 protein functions as a negative regulator of the terminal pathway of the complement system by binding to the C8/C9 factors. To date, little is known about the role of CD59 in coronavirus infectious bronchitis virus (IBV) infection. In this study, we discovered that CD59 was downregulated in IBV-infected cells and was associated with IBV virions. This association protected IBV particles from antibody-dependent complement-mediated lysis. IBV titres in the supernatant were significantly increased when CD59 proteins were overexpressed in cells followed by IBV infection, and this observation was further supported by knockdown or cleavage of CD59. Because no considerable change in IBV N protein and viral RNA levels was detected in total cell lysates prepared from the overexpression, knockdown or cleavage of CD59 groups, our data indicated that CD59 was involved in IBV particle release and that IBV had evolved a mechanism to utilize CD59 to evade complement-mediated destruction.


Assuntos
Anticorpos/metabolismo , Antígenos CD59/metabolismo , Proteínas do Sistema Complemento/metabolismo , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Fatores Imunológicos/metabolismo , Vírus da Bronquite Infecciosa/imunologia , Animais , Linhagem Celular , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA