Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 22(8): e3002615, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159282

RESUMO

Dynamic properties are essential for microtubule (MT) physiology. Current techniques for in vivo imaging of MTs present intrinsic limitations in elucidating the isotype-specific nuances of tubulins, which contribute to their versatile functions. Harnessing the power of the AlphaFold2 pipeline, we engineered a strategy for the minimally invasive fluorescence labeling of endogenous tubulin isotypes or those harboring missense mutations. We demonstrated that a specifically designed 16-amino acid linker, coupled with sfGFP11 from the split-sfGFP system and integration into the H1-S2 loop of tubulin, facilitated tubulin labeling without compromising MT dynamics, embryonic development, or ciliogenesis in Caenorhabditis elegans. Extending this technique to human cells and murine oocytes, we visualized MTs with the minimal background fluorescence and a pathogenic tubulin isoform with fidelity. The utility of our approach across biological contexts and species set an additional paradigm for studying tubulin dynamics and functional specificity, with implications for understanding tubulin-related diseases known as tubulinopathies.


Assuntos
Caenorhabditis elegans , Proteínas de Fluorescência Verde , Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Humanos , Microtúbulos/metabolismo , Camundongos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Engenharia de Proteínas/métodos , Oócitos/metabolismo
2.
PLoS Genet ; 20(8): e1011377, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39186782

RESUMO

Chemical mutagenesis-driven forward genetic screens are pivotal in unveiling gene functions, yet identifying causal mutations behind phenotypes remains laborious, hindering their high-throughput application. Here, we reveal a non-uniform mutation rate caused by Ethyl Methane Sulfonate (EMS) mutagenesis in the C. elegans genome, indicating that mutation frequency is influenced by proximate sequence context and chromatin status. Leveraging these factors, we developed a machine learning enhanced pipeline to create a comprehensive EMS mutagenesis probability map for the C. elegans genome. This map operates on the principle that causative mutations are enriched in genetic screens targeting specific phenotypes among random mutations. Applying this map to Whole Genome Sequencing (WGS) data of genetic suppressors that rescue a C. elegans ciliary kinesin mutant, we successfully pinpointed causal mutations without generating recombinant inbred lines. This method can be adapted in other species, offering a scalable approach for identifying causal genes and revitalizing the effectiveness of forward genetic screens.


Assuntos
Caenorhabditis elegans , Metanossulfonato de Etila , Aprendizado de Máquina , Mutagênese , Mutação , Caenorhabditis elegans/genética , Animais , Fenótipo , Sequenciamento Completo do Genoma/métodos , Cinesinas/genética , Taxa de Mutação , Proteínas de Caenorhabditis elegans/genética , Mapeamento Cromossômico/métodos
3.
Proc Natl Acad Sci U S A ; 121(5): e2311936121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38271337

RESUMO

KIF1A, a microtubule-based motor protein responsible for axonal transport, is linked to a group of neurological disorders known as KIF1A-associated neurological disorder (KAND). Current therapeutic options for KAND are limited. Here, we introduced the clinically relevant KIF1A(R11Q) variant into the Caenorhabditis elegans homolog UNC-104, resulting in uncoordinated animal behaviors. Through genetic suppressor screens, we identified intragenic mutations in UNC-104's motor domain that rescued synaptic vesicle localization and coordinated movement. We showed that two suppressor mutations partially recovered motor activity in vitro by counteracting the structural defect caused by R11Q at KIF1A's nucleotide-binding pocket. We found that supplementation with fisetin, a plant flavonol, improved KIF1A(R11Q) worms' movement and morphology. Notably, our biochemical and single-molecule assays revealed that fisetin directly restored the ATPase activity and processive movement of human KIF1A(R11Q) without affecting wild-type KIF1A. These findings suggest fisetin as a potential intervention for enhancing KIF1A(R11Q) activity and alleviating associated defects in KAND.


Assuntos
Cinesinas , Vesículas Sinápticas , Animais , Humanos , Cinesinas/metabolismo , Vesículas Sinápticas/metabolismo , Neurônios/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mutação
4.
Bioinformatics ; 40(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38318777

RESUMO

MOTIVATION: Protein structure comparison is pivotal for deriving homological relationships, elucidating protein functions, and understanding evolutionary developments. The burgeoning field of in-silico protein structure prediction now yields billions of models with near-experimental accuracy, necessitating sophisticated tools for discerning structural similarities among proteins, particularly when sequence similarity is limited. RESULTS: In this article, we have developed the align distance matrix with scale (ADAMS) pipeline, which synergizes the distance matrix alignment method with the scale-invariant feature transform algorithm, streamlining protein structure comparison on a proteomic scale. Utilizing a computer vision-centric strategy for contrasting disparate distance matrices, ADAMS adeptly alleviates challenges associated with proteins characterized by a high degree of structural flexibility. Our findings indicate that ADAMS achieves a level of performance and accuracy on par with Foldseek, while maintaining similar speed. Crucially, ADAMS overcomes certain limitations of Foldseek in handling structurally flexible proteins, establishing it as an efficacious tool for in-depth protein structure analysis with heightened accuracy. AVAILABILITY: ADAMS can be download and used as a python package from Python Package Index (PyPI): adams · PyPI. Source code and other materials are available from young55775/ADAMS-developing (github.com). An online server is available: Bseek Search Server (cryonet.ai).


Assuntos
Algoritmos , Proteômica , Software , Proteínas/química , Computadores
5.
Acta Pharmacol Sin ; 45(10): 1997-2010, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38822084

RESUMO

Pattern recognition receptors are an essential part of the immune system, which detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and help shape both innate and adaptive immune responses. When dsDNA is present, cyclic GMP-AMP Synthase (cGAS) produces a second messenger called cyclic GMP-AMP (cGAMP), which then triggers an adaptor protein called STING, and eventually activates the expression of type I interferon (IFN) and pro-inflammatory cytokines in immune cells. The cGAS-STING signaling pathway has been receiving a lot of attention lately as a key immune-surveillance mediator. In this review, we summarize the present circumstances of the cGAS-STING signaling pathway in viral infections and inflammatory diseases, as well as autoimmune diseases. Modulation of the cGAS-STING signaling pathway provides potential strategies for treating viral infections, inflammatory diseases, and autoimmune diseases.


Assuntos
Doenças Autoimunes , Inflamação , Proteínas de Membrana , Nucleotidiltransferases , Transdução de Sinais , Viroses , Humanos , Doenças Autoimunes/metabolismo , Doenças Autoimunes/imunologia , Viroses/imunologia , Viroses/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Animais , Inflamação/metabolismo , Inflamação/imunologia
6.
Chem Biodivers ; 20(6): e202300373, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37162003

RESUMO

Chemical investigation of medicinal plant Glycosmis lucida Wall. ex C. C. Huang leaves led to the production of ten compounds (1-10), including two previously unreported geranylated sulfur-containing amides (1 and 2) and eight known ones (3-10). Structural characterization was carried out using comprehensive spectroscopic methods including NMR, MS and CD. The inhibitory effects of all isolates on Th17 differentiation were evaluated, of which compounds 1 and 6 significantly inhibited Th17 differentiation with IC50 values of 0.36 and 1.30 µM, respectively, while both 1 and 6 failed to bind to retinoic acid-related orphan receptor gamma t (RORγt), suggesting that their inhibition of Th17 differentiation is independent of RORγt.


Assuntos
Amidas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Amidas/farmacologia , Amidas/química , Enxofre , Diferenciação Celular
7.
Metabolomics ; 16(6): 68, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451742

RESUMO

BACKGROUND: Metabolomics provides measurement of numerous metabolites in human samples, which can be a useful tool in clinical research. Blood and urine are regarded as preferred subjects of study because of their minimally invasive collection and simple preprocessing methods. Adhering to standard operating procedures is an essential factor in ensuring excellent sample quality and reliable results. AIM OF REVIEW: In this review, we summarize the studies about the impacts of various preprocessing factors on metabolomics studies involving clinical blood and urine samples in order to provide guidance for sample collection and preprocessing. KEY SCIENTIFIC CONCEPTS OF REVIEW: Clinical information is important for sample grouping and data analysis which deserves attention before sample collection. Plasma and serum as well as urine samples are appropriate for metabolomics analysis. Collection tubes, hemolysis, delay at room temperature, and freeze-thaw cycles may affect metabolic profiles of blood samples. Collection time, time between sampling and examination, contamination, normalization strategies, and storage conditions may alter analysis results of urine samples. Taking these collection and preprocessing factors into account, this review provides suggestions of standard sample preprocessing.


Assuntos
Análise Química do Sangue/métodos , Metabolômica/métodos , Urinálise/métodos , Sangue/metabolismo , Líquidos Corporais , Cromatografia Líquida/métodos , Humanos , Metaboloma/fisiologia , Plasma , Reprodutibilidade dos Testes , Soro , Manejo de Espécimes/métodos , Urina/química
8.
Exp Cell Res ; 373(1-2): 211-220, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30399372

RESUMO

Diacylglycerol kinases (DGK) are a family of enzymes catalyzing the transformation of diacylglycerol into phosphatidic acid, which have been recognized as key regulators in cell signaling pathways. The role of DGKγ in human malignancies has seldom been studied. In this study, we investigated the role of DGKγ in hepatocellular carcinoma (HCC). We found that DGKγ was down-regulated in HCC tumor tissues and cell lines as compared to that in non-tumor tissues. The prognostic value of DGKγ expression was evaluated by Cox regression and Kaplan-Meier analyses. Lower DGKγ expression in tumor tissues was an independent prognostic factor for poor post-surgical overall survival. By using HDACs inhibitors treatment and ChIP-PCR, we discovered that histone H3 and H4 deacetylation mainly contributed to the downregulation of DGKγ expression. Functional studies revealed that ectopic expression of DGKγ inhibited cell proliferation and cell migration in HCC cells. Mechanism studies showed that DGKγ overexpression led to down regulation of GLUT1 protein level and AMPK activity, which result in glucose uptake suppression as well as lactate and ATP production declination. The decrease of GLUT1 level could be partially rescued by treatments with either DGK inhibitor and lysosome inhibitor, indicating DGKγ may down-regulate GLUT1 through its kinase activity and lysosome degradation process. Together, this study demonstrated that DGKγ plays a tumor suppressor role in HCC by negatively regulating GLUT1. DGKγ could be a novel prognostic indicator and therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/enzimologia , Diacilglicerol Quinase/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Neoplasias Hepáticas/enzimologia , Proteínas Supressoras de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/cirurgia , Linhagem Celular Tumoral , Movimento Celular , Diacilglicerol Quinase/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal , Glucose/metabolismo , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/cirurgia , Prognóstico , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética
9.
World J Microbiol Biotechnol ; 35(6): 95, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31187258

RESUMO

Recombinase polymerase amplification (RPA) is an isothermal amplification technique. Because of its short detection cycle and high specificity, it has been applied in various fields. However, the design of probe on the efficiency of RPA is not well understood and the effect of sequence mismatches of oligonucleotides on the performance of RPA is rarely discussed. In this study, we found that different primers with the same probe have a slight effect on the efficiency of fluorescent RPA, and different probes with the same amplified region have a great influence on the efficiency of fluorescent RPA. We summarized the design rules of probes suitable for fluorescent RPA by analyzing the experimental data. The rule is that the best distance between fluorescent groups in the probe is 1-2 bases, and the G content should be reduced as far as possible. In addition, we verified this rule by designing a series of probes. Furthermore, we found the base mismatches of the probe had a significant effect on RPA, which can lead to false positives and can change the amplification efficiency. However, 1-3 mismatches covering the center of the primer sequence only affect the amplification efficiency of RPA, not its specificity. And with an increase in the number of primer mismatches, the efficiency of RPA will decrease accordingly. This study suggests that the efficiency of fluorescent RPA is closely related to the probe. We recommend that when designing a fluorescent probe, one must consider the presence of closely related non-targets and specific bases.


Assuntos
Pareamento Incorreto de Bases , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases , Bactérias , Primers do DNA/genética , Sensibilidade e Especificidade
10.
Mol Biol Cell ; 35(1): ar13, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938928

RESUMO

The nucleosome remodeling and deacetylase (NuRD) complex is essential for gene expression and cell fate determination, and missense mutations of NuRD caused neurodevelopmental diseases. However, the molecular pathogenesis of clinic NuRD variants is unknown. Here, we introduced a clinic CHD3 (L915F) variant into Caenorhabditis elegans homologue LET-418, impairing germline and vulva development and ultimately causing animal sterility. Our ATAC-seq and RNA-seq analyses revealed that this variant generated an abnormal open chromatin structure and disrupted the expression of developmental genes. Through genetic suppressor screens, we uncovered that intragenic mutations, likely renovating NuRD activity, restored animal viability. We also found that intergenic mutations in nucleosome remodeling factor NURF that counteracts NuRD rescued abnormal chromatin structure, gene expression, and animal sterility. We propose that two antagonistic chromatin-remodeling factors coordinate to establish the proper chromatin status and transcriptome and that inhibiting NURF may provide insights for treatment of NuRD mutation-related diseases.


Assuntos
Proteínas de Drosophila , Infertilidade , Animais , Feminino , Nucleossomos , Montagem e Desmontagem da Cromatina , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas de Drosophila/metabolismo , Caenorhabditis elegans/metabolismo
11.
Heliyon ; 10(14): e34182, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108862

RESUMO

Orexins are a family of neuropeptides secreted by neurons in the lateral hypothalamus (LH). These peptides act widespreadly across the body by interacting with specific orexin receptors on target cells, which comprise the orexinergic system. Emerging evidence has revealed that the orexinergic system is tightly associated with neuropsychiatric disorders; however, the underlying mechanisms require further exploration. Neuropsychiatric disorders have also been associated with neuroplasticity, while orexins have been shown to play regulatory roles in neuronal plasticity. As such, this review aims to summarize the recent progress of research investigating the roles of the orexinergic system in neuronal plasticity and associated neuropsychiatric disorders, including addiction, depression, and schizophrenia, which may provide novel insights into the mechanism of the orexinergic system in the pathogenesis of these neuropsychiatric disorders.

12.
Precis Clin Med ; 7(3): pbae015, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39139990

RESUMO

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the pivotal role of the immune response in determining the progression and severity of viral infections. In this paper, we review the most recent studies on the complicated dynamics between SARS-CoV-2 and the host immune system, highlight the importance of understanding these dynamics in developing effective treatments and formulate potent management strategies for COVID-19. We describe the activation of the host's innate immunity and the subsequent adaptive immune response following infection with SARS-CoV-2. In addition, the review emphasizes the immune evasion strategies of the SARS-CoV-2, including inhibition of interferon production and induction of cytokine storms, along with the resulting clinical outcomes. Finally, we assess the efficacy of current treatment strategies, including antiviral drugs, monoclonal antibodies, and anti-inflammatory treatments, and discuss their role in providing immunity and preventing severe disease.

13.
Behav Brain Res ; 469: 115052, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38782096

RESUMO

Autism spectrum disorder (ASD) is a pervasive developmental disorder with gender differences. Oxytocin (OXT) is currently an important candidate drug for autism, but the lack of data on female autism is a big issue. It has been reported that the effect of OXT is likely to be different between male and female ASD patients. In the study, we specifically explored the role of the OXT signaling pathway in a VPA-induced female rat's model of autism. The data showed that there was an increase of either oxytocin or its receptor expressions in both the hippocampus and the prefrontal cortex of VPA-induced female offspring. To determine if the excess of OXT signaling contributed to autism symptoms in female rats, exogenous oxytocin and oxytocin receptor antagonists Atosiban were used in the experiment. It was found that exogenous oxytocin triggered autism-like behaviors in wild-type female rats by intranasal administration. More interestingly, several autism-like deficits including social interaction, anxiety, and repeat stereotypical sexual behavior in the VPA female offspring were significantly attenuated by oxytocin receptor antagonists Atosiban. Moreover, Atosiban also effectively improved the synaptic plasticity impairment induced by VPA in female offspring. Our results suggest that oxytocin receptor antagonists significantly improve autistic-like behaviors in a female rat model of valproic acid-induced autism.


Assuntos
Transtorno Autístico , Modelos Animais de Doenças , Ocitocina , Receptores de Ocitocina , Ácido Valproico , Vasotocina , Animais , Ácido Valproico/farmacologia , Feminino , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/metabolismo , Ocitocina/farmacologia , Ocitocina/metabolismo , Ocitocina/administração & dosagem , Ratos , Vasotocina/análogos & derivados , Vasotocina/farmacologia , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Comportamento Animal/efeitos dos fármacos , Ratos Sprague-Dawley , Plasticidade Neuronal/efeitos dos fármacos , Interação Social/efeitos dos fármacos , Comportamento Sexual Animal/efeitos dos fármacos , Ansiedade/tratamento farmacológico , Ansiedade/induzido quimicamente , Gravidez
14.
Sci China Life Sci ; 67(6): 1226-1241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38300441

RESUMO

Ovarian cancer is the most lethal and aggressive gynecological cancer with a high recurrence rate and is often diagnosed late. In ovarian cancer, multiple metabolic enzymes of lipid metabolism are abnormally expressed, resulting in metabolism disorder. As a characteristic pathway in polyunsaturated fatty acid (PUFA) metabolism, arachidonic acid (AA) metabolism is disturbed in ovarian cancer. Therefore, we established a 10-gene signature model to evaluate the prognostic risk of PUFA-related genes. This 10-gene signature has strong robustness and can play a stable predictive role in datasets of various platforms (TCGA, ICGC, and GSE17260). The high association between the risk subgroups and clinical characteristics indicated a good performance of the model. Our data further indicated that the high expression of LTA4H was positively correlated with poor prognosis in ovarian cancer. Deficiency of LTA4H enhanced sensitivity to Cisplatin and modified the characteristics of immune cell infiltration in ovarian cancer. Additionally, our results indicate that CCL5 was involved in the aberrant metabolism of the AA/LTA4H axis, which contributes to the reduction of tumor-infiltrating CD8+ T cells and immune escape in ovarian cancer. These findings provide new insights into the prognosis and potential target of LTA4H/CCL5 in treating ovarian cancer.


Assuntos
Quimiocina CCL5 , Cisplatino , Epóxido Hidrolases , Neoplasias Ovarianas , Microambiente Tumoral , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Humanos , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Cisplatino/uso terapêutico , Cisplatino/farmacologia , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/genética , Linhagem Celular Tumoral , Prognóstico , Regulação Neoplásica da Expressão Gênica , Ácido Araquidônico/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos
15.
Elife ; 122024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994733

RESUMO

Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+-adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD's asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , ATPases Vacuolares Próton-Translocadoras , Caenorhabditis elegans/genética , Animais , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Divisão Celular Assimétrica , Apoptose , Epigênese Genética , Nucleossomos/metabolismo
16.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38856093

RESUMO

AlphaMissense identifies 23 million human missense variants as likely pathogenic, but only 0.1% have been clinically classified. To experimentally validate these predictions, chemical mutagenesis presents a rapid, cost-effective method to produce billions of mutations in model organisms. However, the prohibitive costs and limitations in the throughput of whole-genome sequencing (WGS) technologies, crucial for variant identification, constrain its widespread application. Here, we introduce a Tn5 transposase-assisted tagmentation technique for conducting WGS in Caenorhabditis elegans, Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii. This method, demands merely 20 min of hands-on time for a single-worm or single-cell clones and incurs a cost below 10 US dollars. It effectively pinpoints causal mutations in mutants defective in cilia or neurotransmitter secretion and in mutants synthetically sterile with a variant analogous to the B-Raf Proto-oncogene, Serine/Threonine Kinase (BRAF) V600E mutation. Integrated with chemical mutagenesis, our approach can generate and identify missense variants economically and efficiently, facilitating experimental investigations of missense variants in diverse species.


Assuntos
Caenorhabditis elegans , Transposases , Sequenciamento Completo do Genoma , Animais , Caenorhabditis elegans/genética , Sequenciamento Completo do Genoma/métodos , Transposases/genética , Transposases/metabolismo , Chlamydomonas reinhardtii/genética , Saccharomyces cerevisiae/genética , Escherichia coli/genética
17.
Front Endocrinol (Lausanne) ; 15: 1420948, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39371926

RESUMO

Objective: The long-term glucose monitoring is essential to the risk assessment of diabetic retinopathy (DR), the aim of this study was to investigate the predictive ability of visit-to-visit fasting blood glucose (FBG) indices on the risk of DR. Methods: This was a community-based, cohort study conducted from 2013 to 2021. DR was diagnosed by digital fundus photography. The FPG indices included FBG, var. Associations of each FBG indices and DR were estimated using multinomial logistic regression models adjusting for confounders, and discrimination was determined by area under the curve (AUC). Predictive utility of different models was compared by changes in AUC, integrated discrimination improvement (IDI), and net reclassification index (NRI). Results: This study analyzed 5054 participants, the mean age was 46.26 ± 11.44 years, and 2620 (51.84%) were women. After adjustment for confounders, the adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for FBG, SD, CV, VIM, ARV, M-FBG, and cumulative FBG load were 1.62 (1.52-1.73), 2.74 (2.38-3.16), 1.78 (1.62-1.95), 1.11 (0.95-1.29), 1.72 (1.56-1.91), 2.15 (1.96-2.36), and 2.57 (2.31-2.85), respectively. The AUC of the model with separate cumulative FBG load and classical risk factors was 0.9135 (95%CI 0.8890-0.9380), and no substantive improvement in discrimination was achieved with the addition of other FBG indices once cumulative FBG load was in the model. Conclusions: Cumulative FBG load is adequate for capturing the glucose-related DR risk, and the predictive utility of cumulative FBG load is not significantly improved by adding or replacing other FBG indices in the assessment of DR risk.


Assuntos
Glicemia , Retinopatia Diabética , Jejum , Humanos , Feminino , Masculino , Retinopatia Diabética/sangue , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/epidemiologia , Pessoa de Meia-Idade , Glicemia/análise , Jejum/sangue , Adulto , Medição de Risco/métodos , Fatores de Risco , Estudos de Coortes , Prognóstico
18.
Adv Sci (Weinh) ; 11(23): e2308045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520088

RESUMO

The regulation of PD-L1 is the key question, which largely determines the outcome of the immune checkpoint inhibitors (ICIs) based therapy. However, besides the transcription level, the protein stability of PD-L1 is closely correlated with its function and has drawn increasing attention. In this study, EZH2 inhibition enhances PD-L1 expression and protein stability, and the deubiquitinase ubiquitin-specific peptidase 22 (USP22) is identified as a key mediator in this process. EZH2 inhibition transcriptionally upregulates USP22 expression, and upregulated USP22 further stabilizes PD-L1. Importantly, a combination of EZH2 inhibitors with anti-PD-1 immune checkpoint blockade therapy improves the tumor microenvironment, enhances sensitivity to immunotherapy, and exerts synergistic anticancer effects. In addition, knocking down USP22 can potentially enhance the therapeutic efficacy of EZH2 inhibitors on colon cancer. These findings unveil the novel role of EZH2 inhibitors in tumor immune evasion by upregulating PD-L1, and this drawback can be compensated by combining ICI immunotherapy. Therefore, these findings provide valuable insights into the EZH2-USP22-PD-L1 regulatory axis, shedding light on the optimization of combining both immune checkpoint blockade and EZH2 inhibitor-based epigenetic therapies to achieve more efficacies and accuracy in cancer treatment.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Proteína Potenciadora do Homólogo 2 de Zeste , Estabilidade Proteica , Ubiquitina Tiolesterase , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Estabilidade Proteica/efeitos dos fármacos , Linhagem Celular Tumoral , Ubiquitinação , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Modelos Animais de Doenças , Microambiente Tumoral/efeitos dos fármacos
19.
Sci China Life Sci ; 66(12): 2773-2785, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37450239

RESUMO

Stearoyl-CoA desaturase 1 (SCD1) converts saturated fatty acids to monounsaturated fatty acids. The expression of SCD1 is increased in many cancers, and the altered expression contributes to the proliferation, invasion, sternness and chemoresistance of cancer cells. Recently, more evidence has been reported to further support the important role of SCD1 in cancer, and the regulation mechanism of SCD1 has also been focused. Multiple factors are involved in the regulation of SCD1, including metabolism, diet, tumor microenvironment, transcription factors, non-coding RNAs, and epigenetics modification. Moreover, SCD1 is found to be involved in regulating ferroptosis resistance. Based on these findings, SCD1 has been considered as a potential target for cancer treatment. However, the resistance of SCD1 inhibition may occur in certain tumors due to tumor heterogeneity and metabolic plasticity. This review summarizes recent advances in the regulation and function of SCD1 in tumors and discusses the potential clinical application of targeting SCD1 for cancer treatment.


Assuntos
Neoplasias , Estearoil-CoA Dessaturase , Humanos , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Ácidos Graxos/metabolismo , Epigênese Genética , Microambiente Tumoral
20.
Front Immunol ; 14: 1163397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090710

RESUMO

Introdcution: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of COVID-19 mortality. However, drug delivery to lung tissues is impeded by endothelial cell barriers, limiting the efficacy of existing treatments. A prompt and aggressive treatment strategy is therefore necessary. Methods: We assessed the ability of anti-CD31-ORI-NPs to penetrate endothelial cell barriers and specifically accumulate in lung tissues using an animal model. We also compared the efficacy of anti-CD31-ORI-NPs to that of free oridonin in ameliorating acute lung injury and evaluated the cytotoxicity of both treatments on endothelial cells. Results: Compared to free ORI, the amount of anti-CD31-ORI-NPs accumulated in lung tissues increase at least three times. Accordingly, anti-CD31-ORI-NPs improve the efficacy three times on suppressing IL-6 and TNF-a secretion, ROS production, eventually ameliorating acute lung injury in animal model. Importantly, anti-CD31-ORI-NPs significantly decrease the cytotoxicity at least two times than free oridonin on endothelial cells. Discussion: Our results from this study will not only offer a novel therapeutic strategy with high efficacy and low toxicity, but also provide the rational design of nanomaterials of a potential drug for acute lung injury therapy.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Animais , Células Endoteliais , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação/tratamento farmacológico , Células Epiteliais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA