Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566099

RESUMO

Objective: The present study aimed to develop and optimize esomeprazole loaded proniosomes (EZL-PNs) to improve bioavailability and therapeutic efficacy. Method: EZL-PNs formulation was developed by slurry method and optimized by 33 box-Bhekhen statistical design software. Span 60 (surfactant), cholesterol, EZL concentration were taken as independent variables and their effects were evaluated on vesicle size (nm), entrapment efficiency (%, EE) and drug release (%, DR). Furthermore, optimized EZL-PNs (EZL-PNs-opt) formulation was evaluated for ex vivo permeation, pharmacokinetic and ulcer protection activity. Result: The EZL-PNs-opt formulation showed 616 ± 13.21 nm of vesicle size, and 81.21 ± 2.35% of EE. EZL-PNs-opt exhibited negative zeta potential and spherical confirmed scanning electron microscopy. EZL-PNs-opt showed sustained release of EZL (95.07 ± 2.10% in 12 h) than pure EZL dispersion. The ex-vivo gut permeation result exhibited a significantly (p < 0.05) enhanced flux than pure EZL. The in vivo results revealed 4.02-fold enhancement in bioavailability and 61.65% protection in ulcer than pure EZL dispersion (43.82%). Conclusion: Our findings revealed that EZL-PNs formulation could be an alternative delivery system of EZL to enhance oral bioavailability and antiulcer activity.


Assuntos
Esomeprazol , Úlcera , Administração Cutânea , Disponibilidade Biológica , Portadores de Fármacos , Liberação Controlada de Fármacos , Esomeprazol/farmacologia , Humanos , Tamanho da Partícula
2.
J Surg Res ; 201(2): 272-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27020807

RESUMO

BACKGROUND: It has been noted that nitric oxide (NO) is involved in the ischemic preconditioning (IPC)-mediated cardioprotection. Diabetes is a downregulator of atrial natriuretic peptide (ANP), resulting in low expression of endothelial nitric oxide synthase (eNOS) by which NO level get reduced. The purpose of the present study was to investigate the role of ANP in attenuated cardioprotective effect of IPC in the diabetic rat heart. METHODS: The heart was isolated from the diabetic rat and mounted on Langendorff's apparatus, subjected to 30-min ischemia and 120-min reperfusion. IPC was mediated by four cycles of 5-min ischemia and 5-min reperfusion. The infarct size was estimated using triphenyltetrazolium chloride stain, and coronary effluent was analyzed for lactate dehydrogenase and creatinine kinase-MB release to assess the degree of myocardial injury. The cardiac release of NO was estimated indirectly by measuring the release of nitrite in coronary effluent. RESULTS: IPC-mediated cardioprotection was significantly attenuated in the diabetic rat as compared with the normal rat. Perfusion of ANP (0.1 µM/L) in the diabetic rat heart significantly restored the attenuated cardioprotective effect of IPC and also increased the release of NO. However, this observed cardioprotection was significantly attenuated by perfusion of N-nitro L-arginine methyl ester, an eNOS inhibitor (100 µM/L) noted in terms of increase in myocardial infarct size, release of lactate dehydrogenase and creatinine kinase-MB, and also decreases in release of NO. CONCLUSIONS: Thus, it is suggested that ANP restores the attenuated cardioprotective effect in the diabetic heart which may be due to increase in the expression of eNOS and subsequent increase in the activity of NO.


Assuntos
Fator Natriurético Atrial/uso terapêutico , Diabetes Mellitus Experimental/complicações , Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Aloxano , Animais , Glicemia , Avaliação Pré-Clínica de Medicamentos , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Nitritos/metabolismo , Ratos Wistar
3.
Curr Rheumatol Rev ; 20(1): 27-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37694798

RESUMO

Osteoarthritis is a degenerative joint disease that causes the cartilage and bone underneath the joint to break down. This causes pain and stiffness. Resveratrol, a polyphenolic compound found in various vegetables, fruits, and red wine, has been studied for its beneficial effects on osteoarthritis. Resveratrol has been shown to target a variety of pathways, including the NF-κB, PI3K/Akt, MAPK/ERK, and AMPK pathways. In particular, resveratrol has been studied for its potential use in treating osteoarthritis, and it has been shown to reduce inflammation, reduce cartilage degradation, and improve joint function. In this review, we discuss the evidence for the pharmacological use of resveratrol in minimizing soft tissue damage associated with osteoarthritis. We summarize the studies on how resveratrol has anti-inflammatory, anti-oxidant, and anti-apoptotic effects, as well as effects on cartilage degradation, osteoblast and synoviocyte proliferation, and cytokine production. We also discuss the possible mechanisms of action of resveratrol in osteoarthritis and its potential as a therapeutic agent. Finally, we discuss the potential risks and adverse effects of long-term resveratrol supplementation. Overall, resveratrol has been found to be a possible treatment for osteoarthritis because of its anti-inflammatory, anti-oxidant, and anti-apoptotic properties, and its ability to control the production of enzymes that break down cartilage, osteoblasts, and synoviocytes. Although numerous clinical studies have demonstrated resveratrol's efficacy as an osteoarthritis management agent, further long-term studies are needed to better understand the safety and potential benefits of using resveratrol for osteoarthritis management.


Assuntos
Antioxidantes , Osteoartrite , Humanos , Resveratrol/uso terapêutico , Antioxidantes/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Osteoartrite/tratamento farmacológico
4.
Protein Pept Lett ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323333

RESUMO

AIM: This study aimed to investigate how diosmetin interacts with seven target receptors associated with oxidative stress (OS) and validate its antioxidant properties for the potential management of Parkinson's disease (PD). BACKGROUND: In PD, the degeneration of dopaminergic cells is strongly influenced by OS. This stressor is intricately connected to various mechanisms involved in neurodegeneration, such as mitochondrial dysfunction, neuroinflammation, and excitotoxicity induced by nitric oxide. OBJECTIVE: The aim of this research was to establish a molecular connection between diosmetin and OS-associated target receptors was the goal, and it investigated how this interaction can lessen PD. MATERIAL AND METHODS: Seven molecular targets - Adenosine A2A (AA2A), Peroxisome Proliferator- Activated Receptor Gamma (PPARγ), Protein Kinase AKT1, Nucleolar Receptor NURR1, Liver - X Receptor Beta (LXRß), Monoamine Oxidase - B (MAO-B) and Tropomyosin receptor kinase B (TrkB) were obtained from RCSB. Molecular docking software was employed to determine molecular interactions, while antioxidant activity was assessed through in-vitro assays against various free radicals. RESULTS: Diosmetin exhibited interactions with all seven target receptors at their binding sites. Notably, it showed superior interaction with AA2A and NURR1 compared to native ligands, with binding energies of -7.55, and -6.34 kcal/mol, respectively. Additionally, significant interactions were observed with PPARγ, AKT1, LXRß, MAO-B, and TrkB with binding energies of -8.34, -5.42, -7.66, -8.82, -8.45 kcal/mol, respectively. Diosmetin also demonstrated antioxidant activity against various free radicals, particularly against hypochlorous acid (HOCl) and nitric oxide (NO) free radicals. CONCLUSION: Diosmetin possibly acts on several target receptors linked to the pathophysiology of PD, demonstrating promise as an OS inhibitor and scavenger.

5.
Curr Protein Pept Sci ; 25(7): 507-526, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38561605

RESUMO

Neurodegenerative disorders, which include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), represent a significant and growing global health challenge. Current therapies predominantly focus on symptom management rather than altering disease progression. In this review, we discuss the major therapeutic strategies in practice for these disorders, highlighting their limitations. For AD, the mainstay treatments are cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists. For PD, dopamine replacement therapies, including levodopa, are commonly used. HD is managed primarily with symptomatic treatments, and reusable extends survival in ALS. However, none of these therapies halts or substantially slows the neurodegenerative process. In contrast, this review highlights emerging research into bioactive peptides as potential therapeutic agents. These naturally occurring or synthetically designed molecules can interact with specific cellular targets, potentially modulating disease processes. Preclinical studies suggest that bioactive peptides may mitigate oxidative stress, inflammation, and protein misfolding, which are common pathological features in neurodegenerative diseases. Clinical trials using bioactive peptides for neurodegeneration are limited but show promising initial results. For instance, hemiacetal, a γ-secretase inhibitor peptide, has shown potential in AD by reducing amyloid-beta production, though its development was discontinued due to side effects. Despite these advancements, many challenges remain, including identifying optimal peptides, confirming their mechanisms of action, and overcoming obstacles related to their delivery to the brain. Future research should prioritize the discovery and development of novel bioactive peptides and improve our understanding of their pharmacokinetics and pharmacodynamics. Ultimately, this approach may lead to more effective therapies for neurodegenerative disorders, moving beyond symptom management to potentially modify the course of these devastating diseases.


Assuntos
Doenças Neurodegenerativas , Peptídeos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Peptídeos/uso terapêutico , Peptídeos/química , Peptídeos/farmacologia , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química
6.
Protein Pept Lett ; 31(4): 275-289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629379

RESUMO

BACKGROUND: Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic, and anti-inflammatory activities. OBJECTIVE: This comprehensive review was aimed to critically explore diverse pharmacological activities exhibited by diosmetin. Along with that, this review can also identify potential research areas with an elucidation of the multifactorial underlying signaling mechanism of action of diosmetin in different diseases. METHODS: A comprehensive collection of evidence and insights was obtained from scientific journals and books from physical libraries and electronic platforms like Google Scholar and PubMed. The time frame selected was from year 1992 to July 2023. RESULTS: The review delves into diosmetin's impact on cellular signaling pathways and its potential in various diseases. Due to its ability to modulate signaling pathways and reduce oxidative stress, it can be suggested as a potential versatile therapeutic agent for mitigating oxidative stressassociated pathogenesis. CONCLUSION: The amalgamation of the review underscores diosmetin's promising role as a multifaceted therapeutic agent, highlighting its potential for drug development and clinical applications.


Assuntos
Flavonoides , Estresse Oxidativo , Transdução de Sinais , Transdução de Sinais/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-38738729

RESUMO

Melanocytes are highly specialized dendritic cells that deliver melanin to keratinocytes in melanosomes, which are subcellular organelles where melanin is produced and stored. Mammal's skin, hair, and eyes all contain the complex pigment melanin, which gives them color and ultraviolet protection. Melanins have the potential to be free radical sinks and are strong cation chelators. Amino acid tyrosine and its metabolite, dopa, are the precursors to complex metabolic processes that end with melanin production. Melanocytes generate different types and amounts of melanin, which is defined genetically and is impacted by several extrinsic and intrinsic factors such as hormone fluctuations, inflammation, age, and ultraviolet radiation exposure, leading to the stimulation of numerous melanogenesis pathways. Melasma, a common skin pigmentation condition, is associated with the overproduction of melanin and is characterized by brown to gray-brown and black spots that mostly affect the face. The present review addresses the regulatory mechanisms and signaling pathways involved in skin pigmentation with an emphasis on the altered melanogenesis that causes melasma and hyperpigmentation. The current study also illustrates the available treatment options with cellular and molecular mechanisms for the management of melasma. Understanding the mechanism of the pigmentation process may help researchers develop new therapeutic strategies and novel drugs for the management of melasma.

8.
J Mol Neurosci ; 74(4): 101, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39466510

RESUMO

Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.


Assuntos
Mitocôndrias , Doenças Neurodegenerativas , Humanos , Animais , Doenças Neurodegenerativas/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , DNA Mitocondrial/metabolismo , DNA Mitocondrial/genética , Espécies Reativas de Oxigênio/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-38766821

RESUMO

Neurological disorders present a formidable challenge in healthcare, necessitating the continuous exploration of innovative therapeutic avenues. This review delves into the burgeoning field of natural diterpenoid derivatives and their promising role in addressing neurological disorders. Derived from natural sources, these compounds exhibit a diverse range of pharmacological properties, positioning them as potential agents for treating conditions such as Alzheimer's and Parkinson's disease. The review highlights recent advancements, shedding light on the multifaceted mechanisms through which diterpenoid derivatives exert their effects, from antiinflammatory to neuroprotective actions. As the scientific community navigates the translational journey from bench to bedside, integrating these natural compounds into neurotherapeutics emerges as a compelling prospect. This exploration of the therapeutic frontiers of natural diterpenoid derivatives signifies a significant step towards innovative and effective strategies in the management of neurological disorders. It highlights the potential of natural compounds to revolutionize neurotherapeutics.

10.
Cell Biochem Biophys ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254792

RESUMO

Diabetes is a metabolic condition characterized by high blood glucose levels. Aquatic products like microalgae, bacteria, seagrasses, macroalgae, corals, and sponges have been investigated for potential anti-diabetic properties. We looked at polyphenols, peptides, pigments, and sterols, as well as other bioactive substances found in marine resources, to see if they could help treat or manage diabetes, in addition to describing the several treatment strategies that alter diabetes and its implications, such as inhibition of protein tyrosine phosphatases 1B (PTP1B), α-glucosidase, α-amylase, dipeptidyl peptidase IV (DPP-IV), aldose reductase, lipase, glycogen synthase kinase 3ß (GSK-3ß), and insulin resistance prevention, promotion of liver antioxidant capacity, natural killer cell stimulant, anti-inflammatory actions, increased AMP-activated protein kinase (AMPK) phosphorylation and sugar and metabolism of the lipid, reducing oxidative stress, and ß-pancreatic cell prevention. This study highlights the revolutionary potential of marine bioactive compounds and microorganisms in transforming diabetes care. We believe in a future in which innovative, sustainable, and efficient therapeutic approaches will result in improved quality of life and better outcomes for people with diabetes mellitus by forging a new path for treatment, utilizing the power of the world's oceans, and capitalizing on the symbiotic relationship between humans and the marine ecosystem. This study area offers optimism and promising opportunities for transforming diabetes care.

11.
Curr Pharm Des ; 30(24): 1880-1893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818920

RESUMO

Inflammation is an individual's physiological response to a sequence of physical, chemical, or infectious stressors acting mainly to provide localized protection. Although inflammation is a protective and thus beneficial process, its excess or prolonged action can be harmful to the body. An increasing number of the population worldwide are changing their lifestyles, which leads to a rise in inflammatory diseases, such as atherosclerosis, angina pectoris, myocardial infarction, ulcerative colitis, cancer, and many more. Their treatment is based majorly on the pharmacological approach. However, natural products or bioactive compounds are of great significance in inflammation therapy because they show minimum side effects and maximum bioavailability. Therefore, it is critical to investigate bioactive substances that can modify target functions associated with oxidative stress defense and might be used to achieve various health benefits. This review accentuates the essence of bioactive chemicals used in the treatment of inflammation and other inflammatory illnesses. These bioactive compounds can be of any origin, such as plants, animals, bacteria, fungi, marine invertebrates, etc. Bioactive compounds derived from plant sources, such as glycyrrhizin, lignans, lycopene, resveratrol, indoles, and phenolic and polyphenolic compounds, work mainly by reducing oxidative stress and thereby preventing various inflammatory disorders. A large diversity of these anti-inflammatory bioactive compounds has also been discovered in marine environments, giving rise to an increase in the interest of various scientists in marine invertebrates and microbes. The vast diversity of microbes found in the marine environment represents an enormous supply to extract novel compounds, such as from bacteria, cyanobacteria, fungi, algae, microalgae, tiny invertebrates, etc. In the present review, an attempt has been made to summarize such novel bioactive compounds that help prevent inflammatory responses via different mechanisms of action.


Assuntos
Anti-Inflamatórios , Produtos Biológicos , Inflamação , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Estresse Oxidativo/efeitos dos fármacos
12.
Curr Top Med Chem ; 24(22): 1940-1959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108007

RESUMO

Neurological disorders, characterized by oxidative stress (OS) and inflammation, have become a major global health concern. Redox reactions play a vital role in regulating the balance of the neuronal microenvironment. Specifically, the imbalance leads to a significant weakening of the organism's natural defensive mechanisms. This, in turn, causes the development of harmful oxidative stress, which plays a crucial role in the onset and progression of neurodegenerative diseases. The quest for effective therapeutic agents has led to significant advancements in the synthesis of antioxidant derivatives. This review provides a comprehensive overview of the recent developments in the use of novel antioxidant compounds with potential pharmacological applications in the management of neurological disorders. The discussed compounds encompass a diverse range of chemical structures, including polyphenols, vitamins, flavonoids, and hybrid molecules, highlighting their varied mechanisms of action. This review also focuses on the mechanism of oxidative stress in developing neurodegenerative disease. The neuroprotective effects of these antioxidant derivatives are explored in the context of specific neurological disorders, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. The ultimate goal is to provide effective treatments for these debilitating conditions and improve the quality of life for patients.


Assuntos
Antioxidantes , Estresse Oxidativo , Humanos , Antioxidantes/farmacologia , Antioxidantes/síntese química , Antioxidantes/química , Estresse Oxidativo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Doenças Neurodegenerativas/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Animais
13.
3 Biotech ; 14(11): 260, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39376479

RESUMO

Mood disorders, including depression, remain a significant global health concern, necessitating continuous efforts to develop novel and more effective antidepressant therapies. Although there have been significant advancements in comprehending the biology of Major Depressive Disorder (MDD), a considerable number of people suffering from depression do not exhibit positive responses to the pharmacologic treatments now available. This study specifically examines emerging targets and potential future approaches for pharmaceutical interventions in the treatment of MDD. The discussion revolves around novel therapeutic agents and their effectiveness in treating depression. The focus is on the specific pathophysiological pathways targeted by these agents and the amount of evidence supporting their use. While conventional antidepressants are anticipated to continue being the primary treatment for MDD in the foreseeable future, there is currently extensive research being conducted on numerous new compounds to determine their effectiveness in treating MDD. Many of these compounds have shown encouraging results. This review highlighted the recent advances in the synthesis of antidepressant derivatives and explores their pharmacologic insights for the treatment of mood disorders.

14.
Artigo em Inglês | MEDLINE | ID: mdl-39350406

RESUMO

Neurodegenerative diseases present significant public health challenges, driving the search for innovative therapeutic strategies. This review explores the neuroprotective potential of furan-containing compounds, which are derived from various natural and synthetic sources. These compounds are observed for their diverse pharmacological activities, including antioxidant and anti-inflammatory properties. By scavenging free radicals and mitigating oxidative stress, they address a key aspect of neurodegeneration. Additionally, furan derivatives modulate inflammatory pathways, potentially reducing neuroinflammation, a critical factor in the progression of these disorders. The review also highlights the impact of these compounds on neuronal survival and regeneration, suggesting their role in promoting neurogenesis and enhancing neuronal plasticity. Their interactions with neurotransmitter systems further support their neuroprotective effects, particularly in maintaining synaptic function and neurotransmission. The potential applications of furan-containing compounds are discussed concerning specific neurodegenerative diseases, such as Alzheimer's and Parkinson's. Insights from preclinical studies and in vitro experiments underscore their therapeutic promise across various experimental models. While still in the early stages of research, the evidence suggests that furan-containing compounds could be valuable in developing effective interventions for neurodegenerative diseases. This review emphasizes the need for further investigation into these compounds to realize their potential as neuroprotective agents fully.

15.
Ageing Res Rev ; 98: 102321, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723752

RESUMO

Over the last three decades, neurodegenerative diseases (NDs) have increased in frequency. About 15% of the world's population suffers from NDs in some capacity, which causes cognitive and physical impairment. Neurodegenerative diseases, including Amyotrophic Lateral Sclerosis, Parkinson's disease, Alzheimer's disease, and others represent a significant and growing global health challenge. Neuroinflammation is recognized to be related to all NDs, even though NDs are caused by a complex mix of genetic, environmental, and lifestyle factors. Numerous genes and pathways such as NFκB, p38 MAPK, Akt/mTOR, caspase, nitric oxide, and COX are involved in triggering brain immune cells like astrocytes and microglia to secrete inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. In AD, the binding of Aß with CD36, TLR4, and TLR6 receptors results in activation of microglia which start to produce proinflammatory cytokines and chemokines. Consequently, the pro-inflammatory cytokines worsen and spread neuroinflammation, causing the deterioration of healthy neurons and the impairment of brain functions. Gene therapy has emerged as a promising therapeutic approach to modulate the inflammatory response in NDs, offering potential neuroprotective effects and disease-modifying benefits. This review article focuses on recent advances in gene therapy strategies targeting neuroinflammation pathways in NDs. We discussed the molecular pathways involved in neuroinflammation, highlighted key genes and proteins implicated in these processes, and reviewed the latest preclinical and clinical studies utilizing gene therapy to modulate neuroinflammatory responses. Additionally, this review addressed the prospects and challenges in translating gene therapy approaches into effective treatments for NDs.


Assuntos
Terapia Genética , Doenças Neurodegenerativas , Doenças Neuroinflamatórias , Humanos , Terapia Genética/métodos , Terapia Genética/tendências , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/genética , Doenças Neuroinflamatórias/terapia , Animais
16.
Eur J Pharmacol ; 980: 176873, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39117264

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by cognitive, motor, and psychiatric symptoms. Despite significant advances in understanding the underlying molecular mechanisms of HD, there is currently no cure or disease-modifying treatment available. Emerging pharmacological approaches offer promising strategies to alleviate symptoms and slow down disease progression. This comprehensive review aims to provide a critical appraisal of the latest developments in pharmacological interventions for HD. The review begins by discussing the pathogenesis of HD, focusing on the role of mutant huntingtin protein, mitochondrial dysfunction, excitotoxicity, and neuro-inflammation. It then explores emerging therapeutic targets, including the modulation of protein homeostasis, mitochondrial function, neuro-inflammation, and neurotransmitter systems. Pharmacological agents targeting these pathways are discussed, including small molecules, gene-based therapies, and neuroprotective agents. In recent years, several clinical trials have been conducted to evaluate the safety and efficiency of novel compounds for HD. This review presents an update on the outcomes of these trials, highlighting promising results and challenges encountered. Additionally, it discusses the potential of repurposing existing drugs approved for other indications as a cost-effective approach for HD treatment. The review concludes by summarizing the current state of pharmacological approaches for HD and outlining future directions in drug development. The integration of multiple therapeutic strategies, personalized medicine approaches, and combination therapies are highlighted as potential avenues to maximize treatment effectiveness.


Assuntos
Doença de Huntington , Fármacos Neuroprotetores , Doença de Huntington/tratamento farmacológico , Humanos , Animais , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Proteína Huntingtina/genética , Proteína Huntingtina/antagonistas & inibidores , Proteína Huntingtina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia Genética/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-39129294

RESUMO

A family of peptides known as bioactive peptides has unique physiological properties and may be used to improve human health and prevent illness. Because bioactive peptides impact the immunological, endocrine, neurological, and cardiovascular systems, they have drawn a lot of interest from researchers. According to recent studies, bioactive peptides have a lot to offer in the treatment of inflammation, neuronal regeneration, localized ischemia, and the blood-brain barrier. It investigates various peptide moieties, including antioxidative properties, immune response modulation, and increased blood-brain barrier permeability. It also looks at how well they work as therapeutic candidates and finds promising peptide-based strategies for better outcomes. Furthermore, it underscores the need for further studies to support their clinical utility and suggests that results from such investigations will enhance our understanding of the pathophysiology of these conditions. In order to understand recent advances in BPs and to plan future research, academic researchers and industrial partners will find this review article to be a helpful resource.

18.
Int J Surg ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320100

RESUMO

BACKGROUND: Stem cell therapy (SCT) has emerged as a potential therapeutic avenue, with various cell types being explored for their efficacy in treating DCM. However, the safety and efficacy of these therapies have been the subject of numerous systematic reviews. This umbrella review aims to consolidate the existing evidence on stem cell interventions for DCM, providing a comprehensive overview of the current research landscape. METHODS: This review was conducted following the JBI and PRISMA guidelines. Systematic reviews and meta-analyses of randomized controlled trials (RCTs) evaluating the safety and efficacy of SCT for DCM were included. Outcomes such as 6MWT, LVEDD, LVEF, MACE, NYHA, and QoL, among others, were considered. A literature search was executed across databases like PubMed, Embase, Web of Science, and Cochrane Database up to October 07, 2023. The quality of the included reviews was assessed using the JBI Checklist for Systematic Reviews and Research Syntheses. Data synthesis was carried out in both narrative and tabular formats, with the GRADE criteria guiding the determination of evidence certainty. RESULTS: Nine systematic reviews met the inclusion criteria. LVEF found to be significantly improved with SCT. LVEDD and LVEDV assessments yielded mixed results, with some reviews observing significant changes. LVESV showed consistent reductions across multiple studies. BNP concentrations post-interventions were explored in several studies, with mixed findings. Health-related quality of life (HRQL) showed varied results, with some studies noting improvements and others finding no significant differences. NYHA classifications and 6-MWT results indicated potential benefits from stem cell treatments. SCT was observed to be generally safe. The certainty of evidence was low or very low for most of outcomes. CONCLUSION: SCT showed has shown promise in treating DCM, with many studies highlighting its safety and potential benefits. Nonetheless, the existing data has its limitations due to biases in the RCTs studies. To truly establish the benefits of SCT for DCM, future high quality RCTS, are crucial.

19.
Neurotoxicology ; 102: 106-113, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636605

RESUMO

BACKGROUND: Obstructive Sleep Apnea (OSA) is a significant health concern characterized by recurrent upper airway blockages during sleep, causing various health issues. There's growing evidence of a link between air pollution and OSA, though research results have been inconsistent. This systematic review and meta-analysis aims to consolidate and examine data on the relationship between air pollution and OSA's risk and severity. METHODS: A literature search across PubMed, EMBASE, and Web of Science was conducted until January 10, 2024. The selection criteria targeted studies involving OSA participants or those at risk, with quantitative air pollution assessments. The Nested Knowledge software facilitated screening and data extraction, while the Newcastle-Ottawa Scale was used for quality assessment. Meta-analyses, utilizing random-effects models, computed pooled odds ratios (ORs) for the OSA risk associated with PM2.5 and NO2 exposure, analyzed using R software version 4.3. RESULTS: The systematic review included twelve studies, four of which were analyzed in the meta-analysis. The meta-analysis revealed diverse results on the association of PM2.5 and NO2 with OSA risk. PM2.5 exposure showed a pooled OR of 0.987 (95 % CI: 0.836-1.138), indicating no substantial overall impact on OSA risk. Conversely, NO2 exposure was linked to a pooled OR of 1.095 (95 % CI: 0.920-1.270), a non-significant increase in risk. Many studies found a relationship between air pollution exposure and elevated Apnea-Hypopnea Index (AHI) levels, indicating a relationship between air pollution and OSA severity. CONCLUSION: The findings suggest air pollutants, especially NO2, might play a role in worsening OSA risk and severity, but the evidence isn't definitive. This highlights the variability of different pollutants' effects and the necessity for more research. Understanding these links is vital for shaping public health policies and clinical approaches to address OSA amidst high air pollution.


Assuntos
Poluição do Ar , Apneia Obstrutiva do Sono , Apneia Obstrutiva do Sono/epidemiologia , Humanos , Poluição do Ar/efeitos adversos , Material Particulado/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Índice de Gravidade de Doença , Fatores de Risco , Dióxido de Nitrogênio/efeitos adversos , Exposição Ambiental/efeitos adversos
20.
Artigo em Inglês | MEDLINE | ID: mdl-39105799

RESUMO

Monoterpenoids, compounds found in various organisms, have diverse applications in various industries. Their effectiveness is influenced by the oil's chemical composition, which in turn is influenced by plant genotype, environmental conditions, cultivation practices, and plant development stage. They are used in various industries due to their distinctive odor and taste, serving as ingredients, additives, insecticides, and repellents. These compounds have synergistic properties, resulting in superior combined effects over discrete ones, potentially beneficial for various health purposes. Many experimental studies have investigated their interactions with other ingredients and their antibacterial, insecticidal, antifungal, anticancer, anti-inflammatory, and antioxidant properties. This review discusses potential synergistic interactions between monoterpenoids and other compounds, their sources, and biological functions. It also emphasizes the urgent need for more research on their bioavailability and toxicity, underlining the importance and relevance of this comprehensive study in the current scientific landscape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA