Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(8): 360, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066828

RESUMO

Toxin-antitoxin (TA) modules are widely found in the genomes of pathogenic bacteria. They regulate vital cellular functions like transcription, translation, and DNA replication, and are therefore essential to the survival of bacteria under stress. With a focus on the type II parDE modules, this study thoroughly examines TAome in Pseudomonas aeruginosa, a bacterium well-known for its adaptability and antibiotic resistance. We explored the TAome in three P. aeruginosa strains: ATCC 27,853, PAO1, and PA14, and found 15 type II TAs in ATCC 27,853, 12 in PAO1, and 13 in PA14, with significant variation in the associated mobile genetic elements. Five different parDE homologs were found by further TAome analysis in ATCC 27,853, and their relationships were confirmed by sequence alignments and precise genomic positions. After comparing these ParDE modules' sequences to those of other pathogenic bacteria, it was discovered that they were conserved throughout many taxa, especially Proteobacteria. Nucleic acids were predicted as potential ligands for ParD antitoxins, whereas ParE toxins interacted with a wide range of small molecules, indicating a diverse functional repertoire. The interaction interfaces between ParDE TAs were clarified by protein-protein interaction networks and docking studies, which also highlighted important residues involved in binding. This thorough examination improves our understanding of the diversity, evolutionary dynamics, and functional significance of TA systems in P. aeruginosa, providing insights into their roles in bacterial physiology and pathogenicity.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Pseudomonas aeruginosa , Sistemas Toxina-Antitoxina , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sistemas Toxina-Antitoxina/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Genoma Bacteriano , Antitoxinas/genética , Antitoxinas/metabolismo , Mapas de Interação de Proteínas , Biologia Computacional , Alinhamento de Sequência
2.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321949

RESUMO

Toxin-antitoxin (TA) modules, initially discovered on bacterial plasmids and subsequently identified within chromosomal contexts, hold a pivotal role in the realm of bacterial physiology. Among these, the pioneering TA system, ccd (Control of Cell Death), primarily localized on the F-plasmid, is known for its orchestration of plasmid replication with cellular division. Nonetheless, the precise functions of such systems within bacterial chromosomal settings remain a compelling subject that demands deeper investigation. To bridge this knowledge gap, our study focuses on exploring ccdABXn2, a chromosomally encoded TA module originating from the entomopathogenic bacterium Xenorhabdus nematophila. We meticulously delved into the system's genomic assignments, structural attributes, and functional interplay. Our findings uncovered intriguing patterns-CcdB toxin homologs exhibited higher conservation levels compared to their CcdA antitoxin counterparts. Moreover, we constructed secondary as well as tertiary models for both the CcdB toxin and CcdA antitoxin using threading techniques and subsequently validated their structural integrity. Our exploration extended to the identification of key interactions, including the peptide interaction with gyrase for the CcdB homolog and CcdB toxin interactions for the CcdA homolog, highlighting the intricate TA interaction network. Through docking and simulation analyses, we unequivocally demonstrated the inhibition of replication via binding the CcdB toxin to its target, DNA gyrase. These insights provide valuable knowledge about the metabolic and physiological roles of the chromosomally encoded ccdABXn2 TA module within the context of X. nematophila, significantly enhancing our comprehension of its functional significance within the intricate ecosystem of the bacterial host.Communicated by Ramaswamy H. Sarma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA