Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(7): 1221-1233, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37328799

RESUMO

The glycosylation of cellular membranes is crucial for the survival and communication of cells. As our target is the engineering of the glycocalyx, we designed a functionalized lipid anchor for the introduction into cellular membranes called Functional Lipid Anchor for MEmbranes (FLAME). Since cholesterol incorporates very effectively into membranes, we developed a twice cholesterol-substituted anchor in a total synthesis by applying protecting group chemistry. We labeled the compound with a fluorescent dye, which allows cell visualization. FLAME was successfully incorporated in the membranes of living human mesenchymal stromal cells (hMSC), acting as a temporary, nontoxic marker. The availability of an azido function─a bioorthogonal reacting group within the compound─enables the convenient coupling of alkyne-functionalized molecules, such as fluorophores or saccharides. After the incorporation of FLAME into the plasma membrane of living hMSC, we were able to successfully couple our molecule with an alkyne-tagged fluorophore via click reaction. This suggests that FLAME is useful for the modification of the membrane surface. Coupling FLAME with a galactosamine derivative yielded FLAME-GalNAc, which was incorporated into U2OS cells as well as in giant unilamellar vesicles (GUVs) and cell-derived giant plasma membrane vesicles (GPMVs). With this, we have shown that FLAME-GalNAc is a useful tool for studying the partitioning in the liquid-ordered (Lo) and the liquid-disordered (Ld) phases. The molecular tool can also be used to analyze the diffusion behavior in the model and the cell membranes by fluorescence correlation spectroscopy (FCS).


Assuntos
Bicamadas Lipídicas , Células-Tronco Mesenquimais , Humanos , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Colesterol/química , Alcinos/metabolismo , Células-Tronco Mesenquimais/metabolismo
2.
Behav Pharmacol ; 30(6): 534-537, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31033524

RESUMO

Chronic neuropathic pain is a burden to millions of patients every day. Patients with neuropathic pain will also experience acute pain throughout their everyday lives adding to their nociceptive burden. Using nociceptive models in mice this study aimed to investigate the relationship between acute visceral pain and chronic neuropathic pain in spontaneous and affective behaviors. Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve of C57BL/6J male mice and examined in assays of acetic acid (AA)-induced stretching or conditioned place aversion to assess nociceptive and aversive behaviors. Stretching induced by a low concentration (0.32%) of AA given intraperitoneally was significantly increased in CCI and paclitaxel-treated animals compared to control animals. A higher concentration (1.2%) of AA was able to induce stretching equally in both neuropathic and control mice. In the conditioned place aversion test, an AA concentration of 0.32% did not induce place aversion in either sham or CCI animals. However, the 1.2% concentration of AA-induced higher place aversion scores in CCI mice compared to sham mice. No difference in place conditioning was observed between paclitaxel and vehicle-treated mice. Overall, our results show that peripheral nerve injury and paclitaxel treatment induces hypersensitivity to AA-induced nociception and place aversion.


Assuntos
Neuralgia/fisiopatologia , Neuralgia/psicologia , Dor Nociceptiva/fisiopatologia , Ácido Acético/metabolismo , Ácido Acético/farmacologia , Animais , Condicionamento Clássico , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade/fisiologia , Dor Nociceptiva/metabolismo , Nervo Isquiático/lesões
4.
J Psychopharmacol ; 36(11): 1280-1293, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321267

RESUMO

BACKGROUND: Because of their implications in several pathological conditions, α4ß2* nicotinic acetylcholine receptors (nAChRs) are potential targets for the treatment of nicotine dependence, pain, and many psychiatric and neurodegenerative diseases. However, they exist in various subtypes, and finding selective tools to investigate them has proved challenging. The nicotinic receptor agonist, 5-iodo-A-85380 (5IA), has helped in delineating the function of ß2-containing subtypes in vitro; however, much is still unknown about its behavioral effects. Furthermore, its effectiveness on α6-containing subtypes is limited. AIMS: To investigate the effects of 5IA on nociception (formalin, hot-plate, and tail-flick tests), locomotion, hypothermia, and conditioned reward after acute and repeated administration, and to examine the potential role of ß2 and α6 nAChR subunits in these effects. Lastly, its selectivity for expressed low sensitivity (LS) and high sensitivity (HS) α4ß2 receptors is investigated. RESULTS: 5IA dose-dependently induced hypothermia, locomotion suppression, conditioned place preference, and antinociception (only in the formalin test but not in the hot-plate or tail-flick tests). Furthermore, these effects were mediated by ß2 but not α6 nicotinic subunits. Finally, we show that 5-iodo-A-85380 potently activates both stoichiometries of α4ß2 nAChRs with differential efficacies, being a full agonist on HS α4(2)ß2(3) nAChRs, and a partial agonist on LS α4(3)ß2(2) nAChRs and α6-containing subtypes as well.


Assuntos
Azetidinas , Receptores Nicotínicos , Animais , Camundongos , Azetidinas/farmacologia , Agonistas Nicotínicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA