Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Immunol ; 25(6): 1020-1032, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831106

RESUMO

The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Receptores Imunológicos , Membro 14 de Receptores do Fator de Necrose Tumoral , Microambiente Tumoral , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Camundongos Knockout , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/imunologia , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia
2.
Cytotherapy ; 26(5): 506-511, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38483365

RESUMO

BACKGROUND AIMS: The successful development of CD19-targeted chimeric antigen receptor (CAR) T-cell therapies has led to an exponential increase in the number of patients recieving treatment and the advancement of novel CAR T products. Therefore, there is a strong need to develop streamlined platforms that allow rapid, cost-effective, and accurate measurement of the key characteristics of CAR T cells during manufacturing (i.e., cell number, cell size, viability, and basic phenotype). METHODS: In this study, we compared the novel benchtop cell analyzer Moxi GO II (ORFLO Technologies), which enables simultaneous evaluation of all the aforementioned parameters, with current gold standards in the field: the Multisizer Coulter Counter (cell counter) and the BD LSRFortessa (flow cytometer). RESULTS: Our results demonstrated that the Moxi GO II can accurately measure cell number and cell size (i.e., cell volume) while simultaneously assessing simple two-color flow cytometry parameters, such as CAR T-cell viability and CD4 or CAR expression. CONCLUSIONS: These measurements are comparable with those of gold standard instruments, demonstrating that the Moxi GO II is a promising platform for quickly monitoring CAR T-cell growth and phenotype in research-grade and clinical samples.


Assuntos
Sobrevivência Celular , Citometria de Fluxo , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Citometria de Fluxo/métodos , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos CD19/imunologia , Antígenos CD19/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Imunofenotipagem/métodos , Tamanho Celular
3.
Mol Cancer ; 22(1): 200, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38066564

RESUMO

BACKGROUND: Commercial anti-CD19 chimeric antigen receptor T-cell therapies (CART19) are efficacious against advanced B-cell non-Hodgkin lymphoma (NHL); however, most patients ultimately relapse. Several mechanisms contribute to this failure, including CD19-negative escape and CAR T dysfunction. All four commercial CART19 products utilize the FMC63 single-chain variable fragment (scFv) specific to a CD19 membrane-distal epitope and characterized by slow association (on) and dissociation (off) rates. We hypothesized that a novel anti-CD19 scFv that engages an alternative CD19 membrane-proximal epitope independent of FMC63 and that is characterized by faster on- and off-rates could mitigate CART19 failure and improve clinical efficacy. METHODS: We developed an autologous CART19 product with 4-1BB co-stimulation using a novel humanized chicken antibody (h1218). This antibody is specific to a membrane-proximal CD19 epitope and harbors faster on/off rates compared to FMC63. We tested h1218-CART19 in vitro and in vivo using FMC63-CART19-resistant models. We conducted a first-in-human multi-center phase I clinical trial to test AT101 (clinical-grade h1218-CART19) in patients with relapsed or refractory (r/r) NHL. RESULTS: Preclinically, h1218- but not FMC63-CART19 were able to effectively eradicate lymphomas expressing CD19 point mutations (L174V and R163L) or co-expressing FMC63-CAR19 as found in patients relapsing after FMC63-CART19. Furthermore, h1218-CART19 exhibited enhanced killing of B-cell malignancies in vitro and in vivo compared with FMC63-CART19. Mechanistically, we found that h1218-CART19 had reduced activation-induced cell death (AICD) and enhanced expansion compared to FMC63-CART19 owing to faster on- and off-rates. Based on these preclinical results, we performed a phase I dose-escalation trial, testing three dose levels (DL) of AT101 (the GMP version of h1218) using a 3 + 3 design. In 12 treated patients (7 DLBCL, 3 FL, 1 MCL, and 1 MZL), AT101 showed a promising safety profile with 8.3% grade 3 CRS (n = 1) and 8.3% grade 4 ICANS (n = 1). In the whole cohort, the overall response rate was 91.7%, with a complete response rate of 75.0%, which improved to 100% in DL-2 and -3. AT101 expansion correlates with CR and B-cell aplasia. CONCLUSIONS: We developed a novel, safe, and potent CART19 product that recognizes a membrane-proximal domain of CD19 with fast on- and off-rates and showed significant efficacy and promising safety in patients with relapsed B-cell NHL. TRIAL REGISTRATION: NCT05338931; Date: 2022-04-01.


Assuntos
Linfoma não Hodgkin , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Humanos , Anticorpos , Antígenos CD19 , Epitopos/metabolismo , Imunoterapia Adotiva/efeitos adversos , Linfoma não Hodgkin/terapia , Linfoma não Hodgkin/metabolismo , Recidiva Local de Neoplasia/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos de Linfócitos T/antagonistas & inibidores
4.
Am J Hematol ; 94(2): 189-199, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30417938

RESUMO

Investigating individual red blood cells (RBCs) is critical to understanding hematologic diseases, as pathology often originates at the single-cell level. Many RBC disorders manifest in altered biophysical properties, such as deformability of RBCs. Due to limitations in current biophysical assays, there exists a need for high-throughput analysis of RBC deformability with single-cell resolution. To that end, we present a method that pairs a simple in vitro artificial microvasculature network system with an innovative MATLAB-based automated particle tracking program, allowing for high-throughput, single-cell deformability index (sDI) measurements of entire RBC populations. We apply our technology to quantify the sDI of RBCs from healthy volunteers, Sickle cell disease (SCD) patients, a transfusion-dependent beta thalassemia major patient, and in stored packed RBCs (pRBCs) that undergo storage lesion over 4 weeks. Moreover, our system can also measure cell size for each RBC, thereby enabling 2D analysis of cell deformability vs cell size with single cell resolution akin to flow cytometry. Our results demonstrate the clear existence of distinct biophysical RBC subpopulations with high interpatient variability in SCD as indicated by large magnitude skewness and kurtosis values of distribution, the "shifting" of sDI vs RBC size curves over transfusion cycles in beta thalassemia, and the appearance of low sDI RBC subpopulations within 4 days of pRBC storage. Overall, our system offers an inexpensive, convenient, and high-throughput method to gauge single RBC deformability and size for any RBC population and has the potential to aid in disease monitoring and transfusion guidelines for various RBC disorders.


Assuntos
Deformação Eritrocítica , Eritrócitos/patologia , Doenças Hematológicas/sangue , Microfluídica/métodos , Anemia Falciforme/sangue , Preservação de Sangue , Voluntários Saudáveis , Humanos , Métodos , Análise de Célula Única/métodos , Talassemia beta/sangue
5.
Sci Immunol ; 9(97): eadn6509, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028827

RESUMO

Most patients treated with US Food and Drug Administration (FDA)-approved chimeric antigen receptor (CAR) T cells eventually experience disease progression. Furthermore, CAR T cells have not been curative against solid cancers and several hematological malignancies such as T cell lymphomas, which have very poor prognoses. One of the main barriers to the clinical success of adoptive T cell immunotherapies is CAR T cell dysfunction and lack of expansion and/or persistence after infusion. In this study, we found that CD5 inhibits CAR T cell activation and that knockout (KO) of CD5 using CRISPR-Cas9 enhances the antitumor effect of CAR T cells in multiple hematological and solid cancer models. Mechanistically, CD5 KO drives increased T cell effector function with enhanced cytotoxicity, in vivo expansion, and persistence, without apparent toxicity in preclinical models. These findings indicate that CD5 is a critical inhibitor of T cell function and a potential clinical target for enhancing T cell therapies.


Assuntos
Antígenos CD5 , Imunoterapia Adotiva , Linfócitos T , Animais , Imunoterapia Adotiva/métodos , Antígenos CD5/imunologia , Camundongos , Humanos , Linfócitos T/imunologia , Linfócitos T/transplante , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Feminino
6.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37055217

RESUMO

Immunotherapy has revolutionized the treatment of cancer. In particular, immune checkpoint blockade, bispecific antibodies, and adoptive T-cell transfer have yielded unprecedented clinical results in hematological malignancies and solid cancers. While T cell-based immunotherapies have multiple mechanisms of action, their ultimate goal is achieving apoptosis of cancer cells. Unsurprisingly, apoptosis evasion is a key feature of cancer biology. Therefore, enhancing cancer cells' sensitivity to apoptosis represents a key strategy to improve clinical outcomes in cancer immunotherapy. Indeed, cancer cells are characterized by several intrinsic mechanisms to resist apoptosis, in addition to features to promote apoptosis in T cells and evade therapy. However, apoptosis is double-faced: when it occurs in T cells, it represents a critical mechanism of failure for immunotherapies. This review will summarize the recent efforts to enhance T cell-based immunotherapies by increasing apoptosis susceptibility in cancer cells and discuss the role of apoptosis in modulating the survival of cytotoxic T lymphocytes in the tumor microenvironment and potential strategies to overcome this issue.


Assuntos
Imunoterapia , Neoplasias , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Imunoterapia Adotiva/métodos , Linfócitos T Citotóxicos , Apoptose , Microambiente Tumoral
7.
Cancer Discov ; 12(10): 2372-2391, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35904479

RESUMO

Chimeric antigen receptor T-cell (CART) immunotherapy led to unprecedented responses in patients with refractory/relapsed B-cell non-Hodgkin lymphoma (NHL); nevertheless, two thirds of patients experience treatment failure. Resistance to apoptosis is a key feature of cancer cells, and it is associated with treatment failure. In 87 patients with NHL treated with anti-CD19 CART, we found that chromosomal alteration of B-cell lymphoma 2 (BCL-2), a critical antiapoptotic regulator, in lymphoma cells was associated with reduced survival. Therefore, we combined CART19 with the FDA-approved BCL-2 inhibitor venetoclax and demonstrated in vivo synergy in venetoclax-sensitive NHL. However, higher venetoclax doses needed for venetoclax-resistant lymphomas resulted in CART toxicity. To overcome this limitation, we developed venetoclax-resistant CART by overexpressing mutated BCL-2(F104L), which is not recognized by venetoclax. Notably, BCL-2(F104L)-CART19 synergized with venetoclax in multiple lymphoma xenograft models. Furthermore, we uncovered that BCL-2 overexpression in T cells intrinsically enhanced CART antitumor activity in preclinical models and in patients by prolonging CART persistence. SIGNIFICANCE: This study highlights the role of BCL-2 in resistance to CART immunotherapy for cancer and introduces a novel concept for combination therapies-the engineering of CART cells to make them resistant to proapoptotic small molecules, thereby enhancing the therapeutic index of these combination therapies. This article is highlighted in the In This Issue feature, p. 2221.


Assuntos
Linfoma de Células B , Linfoma , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Antígenos Quiméricos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Humanos , Imunoterapia , Imunoterapia Adotiva/métodos , Linfoma/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores de Antígenos de Linfócitos T , Sulfonamidas , Linfócitos T
8.
J Exp Med ; 218(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33601414

RESUMO

Immunotherapies such as immune checkpoint blockade and adoptive cell transfer have revolutionized cancer treatment, but further progress is hindered by our limited understanding of tumor resistance mechanisms. Emerging technologies now enable the study of tumors at the single-cell level, providing unprecedented high-resolution insights into the genetic makeup of the tumor microenvironment and immune system that bulk genomics cannot fully capture. Here, we highlight the recent key findings of the use of single-cell RNA sequencing to deconvolute heterogeneous tumors and immune populations during immunotherapy. Single-cell RNA sequencing has identified new crucial factors and cellular subpopulations that either promote tumor progression or leave tumors vulnerable to immunotherapy. We anticipate that the strategic use of single-cell analytics will promote the development of the next generation of successful, rationally designed immunotherapeutics.


Assuntos
Imunoterapia , Neoplasias/terapia , RNA-Seq , Análise de Célula Única , Humanos , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA