Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 153(6): 1228-38, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23683578

RESUMO

Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.


Assuntos
Linhagem Celular , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Técnicas de Transferência Nuclear , Adulto , Animais , Blastocisto/citologia , Fusão Celular , Núcleo Celular/genética , Separação Celular , Feminino , Feto/citologia , Humanos , Macaca mulatta , Mitocôndrias/genética , Oócitos/citologia , Oócitos/metabolismo , Pele/citologia
3.
Nature ; 540(7632): 270-275, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27919073

RESUMO

Maternally inherited mitochondrial (mt)DNA mutations can cause fatal or severely debilitating syndromes in children, with disease severity dependent on the specific gene mutation and the ratio of mutant to wild-type mtDNA (heteroplasmy) in each cell and tissue. Pathogenic mtDNA mutations are relatively common, with an estimated 778 affected children born each year in the United States. Mitochondrial replacement therapies or techniques (MRT) circumventing mother-to-child mtDNA disease transmission involve replacement of oocyte maternal mtDNA. Here we report MRT outcomes in several families with common mtDNA syndromes. The mother's oocytes were of normal quality and mutation levels correlated with those in existing children. Efficient replacement of oocyte mutant mtDNA was performed by spindle transfer, resulting in embryos containing >99% donor mtDNA. Donor mtDNA was stably maintained in embryonic stem cells (ES cells) derived from most embryos. However, some ES cell lines demonstrated gradual loss of donor mtDNA and reversal to the maternal haplotype. In evaluating donor-to-maternal mtDNA interactions, it seems that compatibility relates to mtDNA replication efficiency rather than to mismatch or oxidative phosphorylation dysfunction. We identify a polymorphism within the conserved sequence box II region of the D-loop as a plausible cause of preferential replication of specific mtDNA haplotypes. In addition, some haplotypes confer proliferative and growth advantages to cells. Hence, we propose a matching paradigm for selecting compatible donor mtDNA for MRT.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/uso terapêutico , Herança Materna/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Terapia de Substituição Mitocondrial/métodos , Mutação , Oócitos/metabolismo , Blastocisto/citologia , Blastocisto/metabolismo , Linhagem Celular , Sequência Conservada/genética , DNA Mitocondrial/biossíntese , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Haplótipos/genética , Humanos , Masculino , Meiose , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/prevenção & controle , Doação de Oócitos , Oócitos/citologia , Oócitos/patologia , Fosforilação Oxidativa , Linhagem , Polimorfismo Genético
4.
Nature ; 524(7564): 234-8, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26176921

RESUMO

Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.


Assuntos
DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Perfilação da Expressão Gênica , Haplótipos/genética , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Camundongos , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Encefalomiopatias Mitocondriais/genética , Encefalomiopatias Mitocondriais/metabolismo , Encefalomiopatias Mitocondriais/patologia , Mutação/genética , Técnicas de Transferência Nuclear , Nucleotídeos/genética , Consumo de Oxigênio , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA , Pele/citologia
5.
Biol Reprod ; 102(3): 607-619, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31621839

RESUMO

Heritable mitochondrial DNA (mtDNA) mutations are common, yet only a few recurring pathogenic mtDNA variants account for the majority of known familial cases in humans. Purifying selection in the female germline is thought to be responsible for the elimination of most harmful mtDNA mutations during oogenesis. Here we show that deleterious mtDNA mutations are abundant in ovulated mature mouse oocytes and preimplantation embryos recovered from PolG mutator females but not in their live offspring. This implies that purifying selection acts not in the maternal germline per se, but during post-implantation development. We further show that oocyte mtDNA mutations can be captured and stably maintained in embryonic stem cells and then reintroduced into chimeras, thereby allowing examination of the effects of specific mutations on fetal and postnatal development.


Assuntos
Blastocisto/metabolismo , DNA Mitocondrial/genética , Mutação , Oócitos/metabolismo , Animais , DNA Mitocondrial/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oogênese/genética
6.
Nature ; 511(7508): 177-83, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25008523

RESUMO

Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes/metabolismo , Animais , Linhagem Celular , Aberrações Cromossômicas , Cromossomos Humanos X/genética , Cromossomos Humanos X/metabolismo , Variações do Número de Cópias de DNA , Metilação de DNA , Estudo de Associação Genômica Ampla , Impressão Genômica , Humanos , Técnicas de Transferência Nuclear/normas , Células-Tronco Pluripotentes/citologia , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 114(52): E11111-E11120, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29203658

RESUMO

Patient-specific pluripotent stem cells (PSCs) can be generated via nuclear reprogramming by transcription factors (i.e., induced pluripotent stem cells, iPSCs) or by somatic cell nuclear transfer (SCNT). However, abnormalities and preclinical application of differentiated cells generated by different reprogramming mechanisms have yet to be evaluated. Here we investigated the molecular and functional features, and drug response of cardiomyocytes (PSC-CMs) and endothelial cells (PSC-ECs) derived from genetically relevant sets of human iPSCs, SCNT-derived embryonic stem cells (nt-ESCs), as well as in vitro fertilization embryo-derived ESCs (IVF-ESCs). We found that differentiated cells derived from isogenic iPSCs and nt-ESCs showed comparable lineage gene expression, cellular heterogeneity, physiological properties, and metabolic functions. Genome-wide transcriptome and DNA methylome analysis indicated that iPSC derivatives (iPSC-CMs and iPSC-ECs) were more similar to isogenic nt-ESC counterparts than those derived from IVF-ESCs. Although iPSCs and nt-ESCs shared the same nuclear DNA and yet carried different sources of mitochondrial DNA, CMs derived from iPSC and nt-ESCs could both recapitulate doxorubicin-induced cardiotoxicity and exhibited insignificant differences on reactive oxygen species generation in response to stress condition. We conclude that molecular and functional characteristics of differentiated cells from human PSCs are primarily attributed to the genetic compositions rather than the reprogramming mechanisms (SCNT vs. iPSCs). Therefore, human iPSCs can replace nt-ESCs as alternatives for generating patient-specific differentiated cells for disease modeling and preclinical drug testing.


Assuntos
Diferenciação Celular , Metilação de DNA , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Técnicas de Transferência Nuclear , Células Endoteliais/citologia , Estudo de Associação Genômica Ampla , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia
8.
Nature ; 493(7434): 627-31, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23103867

RESUMO

Mutations in mitochondrial DNA (mtDNA) are associated with severe human diseases and are maternally inherited through the egg's cytoplasm. Here we investigated the feasibility of mtDNA replacement in human oocytes by spindle transfer (ST; also called spindle-chromosomal complex transfer). Of 106 human oocytes donated for research, 65 were subjected to reciprocal ST and 33 served as controls. Fertilization rate in ST oocytes (73%) was similar to controls (75%); however, a significant portion of ST zygotes (52%) showed abnormal fertilization as determined by an irregular number of pronuclei. Among normally fertilized ST zygotes, blastocyst development (62%) and embryonic stem cell isolation (38%) rates were comparable to controls. All embryonic stem cell lines derived from ST zygotes had normal euploid karyotypes and contained exclusively donor mtDNA. The mtDNA can be efficiently replaced in human oocytes. Although some ST oocytes displayed abnormal fertilization, remaining embryos were capable of developing to blastocysts and producing embryonic stem cells similar to controls.


Assuntos
Terapia Genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/terapia , Técnicas de Transferência Nuclear/normas , Adulto , Animais , Núcleo Celular/genética , Criopreservação , Citoplasma/genética , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Embrião de Mamíferos/embriologia , Células-Tronco Embrionárias/citologia , Feminino , Fertilização , Humanos , Macaca mulatta/genética , Macaca mulatta/crescimento & desenvolvimento , Repetições de Microssatélites/genética , Oócitos/citologia , Gravidez , Adulto Jovem , Zigoto/citologia , Zigoto/patologia
9.
Sci Adv ; 10(10): eadk9001, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457500

RESUMO

Canonical mitotic and meiotic cell divisions commence with replicated chromosomes consisting of two sister chromatids. Here, we developed and explored a model of premature cell division, where nonreplicated, G0/G1-stage somatic cell nuclei are transplanted to the metaphase cytoplasm of mouse oocytes. Subsequent cell division generates daughter cells with reduced ploidy. Unexpectedly, genome sequencing analysis revealed proper segregation of homologous chromosomes, resulting in complete haploid genomes. We observed a high occurrence of somatic genome haploidization in nuclei from inbred genetic backgrounds but not in hybrids, emphasizing the importance of sequence homology between homologs. These findings suggest that premature cell division relies on mechanisms similar to meiosis I, where genome haploidization is facilitated by homologous chromosome interactions, recognition, and pairing. Unlike meiosis, no evidence of recombination between somatic cell homologs was detected. Our study offers an alternative in vitro gametogenesis approach by directly reprogramming diploid somatic cells into haploid oocytes.


Assuntos
Diploide , Meiose , Animais , Camundongos , Haploidia , Meiose/genética , Núcleo Celular/genética , Cromátides
10.
Cell Stem Cell ; 18(5): 625-36, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27151456

RESUMO

The genetic integrity of iPSCs is an important consideration for therapeutic application. In this study, we examine the accumulation of somatic mitochondrial genome (mtDNA) mutations in skin fibroblasts, blood, and iPSCs derived from young and elderly subjects (24-72 years). We found that pooled skin and blood mtDNA contained low heteroplasmic point mutations, but a panel of ten individual iPSC lines from each tissue or clonally expanded fibroblasts carried an elevated load of heteroplasmic or homoplasmic mutations, suggesting that somatic mutations randomly arise within individual cells but are not detectable in whole tissues. The frequency of mtDNA defects in iPSCs increased with age, and many mutations were non-synonymous or resided in RNA coding genes and thus can lead to respiratory defects. Our results highlight a need to monitor mtDNA mutations in iPSCs, especially those generated from older patients, and to examine the metabolic status of iPSCs destined for clinical applications.


Assuntos
Envelhecimento/genética , DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Adulto , Idoso , Células Sanguíneas/metabolismo , Fibroblastos/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Pele/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA