Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(10): 1607-1621, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36611004

RESUMO

Stress granules are membrane-less ribonucleoprotein organelles that assemble upon exposure to stress conditions, but rapidly disassemble upon removal of stress. However, chronic stress can lead to persistent stress granules, a feature of distinct age-related neurodegenerative disorders. Among them, Huntington's disease (HD), which is caused by mutant expansion of the polyglutamine (polyQ) repeats of huntingtin protein (HTT), leading to its aggregation. To identify modulators of mutant HTT aggregation, we define its interactome in striatal neurons differentiated from patient-derived induced pluripotent stem cells (HD-iPSCs). We find that HTT interacts with G3BP1, a characteristic component of stress granules. Knockdown of G3BP1 increases mutant HTT protein levels and abolishes the ability of iPSCs as well as their differentiated neural counterparts to suppress mutant HTT aggregation. Moreover, loss of G3BP1 hastens polyQ-expanded aggregation and toxicity in the neurons of HD C. elegans models. Likewise, the assembly of G3BP1 into stress granules upon distinct stress conditions also reduces its interaction with HTT in human cells, promoting mutant HTT aggregation. Notably, enhancing the levels of G3BP1 is sufficient to induce proteasomal degradation of mutant HTT and prevent its aggregation, whereas the formation of stress granules blocks these ameliorative effects. In contrast, a mutant G3BP1 variant that cannot accumulate into granules retains its capacity to prevent mutant HTT aggregation even when the cells assemble stress granules. Thus, our findings indicate a direct role of G3BP1 and stress granule assembly in mutant HTT aggregation that may have implications for HD.


Assuntos
Doença de Huntington , Agregados Proteicos , Animais , Humanos , DNA Helicases/metabolismo , Grânulos de Estresse , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mutação
2.
Hum Mol Genet ; 27(23): 4117-4134, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452683

RESUMO

Pluripotent stem cells are invaluable resources to study development and disease, holding a great promise for regenerative medicine. Here we use human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) from patients with Huntington's disease (HD-iPSCs) to shed light into the normal function of huntingtin (HTT) and its demise in disease. We find that HTT binds ATF7IP, a regulator of the histone H3 methyltransferase SETDB1. HTT inhibits the interaction of the ATF7IP-SETDB1 complex with other heterochromatin regulators and transcriptional repressors, maintaining low levels of H3K9 trimethylation (H3K9me3) in hESCs. Loss of HTT promotes global increased H3K9me3 levels and enrichment of H3K9me3 marks at distinct genes, including transcriptional regulators of neuronal differentiation. Although these genes are normally expressed at low amounts in hESCs, HTT knockdown (KD) reduces their induction during neural differentiation. Notably, mutant expanded polyglutamine repeats in HTT diminish its interaction with ATF7IP-SETDB1 complex and trigger H3K9me3 in HD-iPSCs. Conversely, KD of ATF7IP in HD-iPSCs reduces H3K9me3 alterations and ameliorates gene expression changes in their neural counterparts. Taken together, our results indicate ATF7IP as a potential target to correct aberrant H3K9me3 levels induced by mutant HTT.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Proteínas Metiltransferases/genética , Fatores de Transcrição/genética , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Heterocromatina/genética , Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase , Humanos , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Lentivirus/genética , Neurônios/metabolismo , Neurônios/patologia , Peptídeos/genética , Proteínas Repressoras
3.
Cell Mol Life Sci ; 75(2): 275-290, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28748323

RESUMO

Protein homeostasis, or proteostasis, is essential for cell function, development, and organismal viability. The composition of the proteome is adjusted to the specific requirements of a particular cell type and status. Moreover, multiple metabolic and environmental conditions challenge the integrity of the proteome. To maintain the quality of the proteome, the proteostasis network monitors proteins from their synthesis through their degradation. Whereas somatic stem cells lose their ability to maintain proteostasis with age, immortal pluripotent stem cells exhibit a stringent proteostasis network associated with their biological function and intrinsic characteristics. Moreover, growing evidence indicates that enhanced proteostasis mechanisms play a central role in immortality and cell fate decisions of pluripotent stem cells. Here, we will review new insights into the melding fields of proteostasis and pluripotency and their implications for the understanding of organismal development and survival.


Assuntos
Estresse do Retículo Endoplasmático , Células-Tronco Pluripotentes/metabolismo , Proteoma/metabolismo , Proteostase , Animais , Diferenciação Celular , Sobrevivência Celular , Humanos , Modelos Biológicos , Células-Tronco Pluripotentes/citologia , Resposta a Proteínas não Dobradas
4.
Arch Gynecol Obstet ; 298(3): 655-661, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29971558

RESUMO

PURPOSE: We are conducting a prospective study trying to determine, in both sexes, the frequency of appearance of ectopic Leydig cells, their preferred location, their relationship with nerve structures and the possible causes of their appearance. METHODS: We have studied 86 cases that were removed according to different clinical indications for pathological study: uterine leyomiomas (n = 12), ovarian cystadenoma (n = 4), endometrial hyperplasia (n = 8), endometrial carcinoma (n = 12), cervical carcinoma (n = 4), seminoma (n = 4), fallopian tube ligatures (n = 24), vasectomies (n = 8), nonspecific orchiepididymitis (n = 2), and unknown (n = 8). RESULTS: We have observed ectopic Leydig cells in 13/86 cases (15.11%), 9/72 in the female samples (12.50%) and 4/14 in male samples (28.57%). The most frequent location was the mesosalpinx (4 of 13: 30.76%). CONCLUSIONS: These high figures lead us to believe that the ectopia of Leydig cells is not really a pathologic entity, but a finding related to specific functions yet to be determined.


Assuntos
Células Intersticiais do Testículo/citologia , Neoplasias Ovarianas/patologia , Testículo/citologia , Tubas Uterinas , Feminino , Humanos , Masculino , Estudos Prospectivos
5.
Int J Mol Sci ; 18(7)2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28753941

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disorder characterized by motor dysfunction, cognitive deficits and psychosis. HD is caused by mutations in the Huntingtin (HTT) gene, resulting in the expansion of polyglutamine (polyQ) repeats in the HTT protein. Mutant HTT is prone to aggregation, and the accumulation of polyQ-expanded fibrils as well as intermediate oligomers formed during the aggregation process contribute to neurodegeneration. Distinct protein homeostasis (proteostasis) nodes such as chaperone-mediated folding and proteolytic systems regulate the aggregation and degradation of HTT. Moreover, polyQ-expanded HTT fibrils and oligomers can lead to a global collapse in neuronal proteostasis, a process that contributes to neurodegeneration. The ability to maintain proteostasis of HTT declines during the aging process. Conversely, mechanisms that preserve proteostasis delay the onset of HD. Here we will review the link between proteostasis, aging and HD-related changes.


Assuntos
Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteostase , Envelhecimento/metabolismo , Chaperonas de Histonas , Humanos , Proteína Huntingtina/química , Doença de Huntington/genética , Chaperonas Moleculares/metabolismo , Mutação , Dobramento de Proteína , Proteólise
6.
Biometals ; 29(5): 935-44, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27567902

RESUMO

Accurate quantification depends on normalization of the measured gene expression data. In particular, gene expression studies with exposure to metals are challenging due their toxicity and redox-active properties. Here, we assessed the stability of potential reference genes in three cell lines commonly used to study metal cell metabolism: Caco-2 (colon), HepG2 (liver) and THP-1 (peripheral blood) under copper (Cu) or zinc (Zn) exposure. We used combined statistical tools to identify the best reference genes from a set of eleven candidates, which included traditional "housekeeping" genes such as GAPDH and B-ACTIN, in cell lines exposed to high and low, Zn and Cu concentrations. The expression stabilities of ATP5B (ATP synthase) and CYC1 (subunits of the cytochrome) were the highest considering the effect of Zn and Cu treatments whereas SDHA (succinate dehydrogenase) was found to be the most unstable gene. Even though the transcriptional effect of Zn and Cu is very different in term of redox properties, the same best reference genes were identified when Zn or Cu treatments were analyzed together. Our results indicate that ATP5B/CYC1 are the best candidates for reference genes after metal exposure, which can be used as a suitable starting point to evaluate gene expression with other metals or in different cell types in human models.


Assuntos
Cobre/farmacologia , Grupo dos Citocromos c/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Zinco/farmacologia , Linhagem Celular , Grupo dos Citocromos c/metabolismo , Grupo dos Citocromos c/normas , Perfilação da Expressão Gênica , Humanos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/normas , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência
7.
J Cell Physiol ; 229(5): 607-19, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24446197

RESUMO

Copper is an essential cofactor of complex IV of the electron transfer chain, and it is directly involved in the generation of mitochondrial membrane potential. Its deficiency induces the formation of ROS, large mitochondria and anemia. Thus, there is a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis. Copper depletion might end in cellular apoptosis or necrosis. However, before entering into those irreversible processes, mitochondria may execute a series of adaptive responses. Mitochondrial adaptive responses (MAR) may involve multiple and diverse mechanisms for preserving cell life, such as mitochondrial dynamics, OXPHOS remodeling and bioenergetics output. In this study, a mild copper deficiency was produced in an animal model through intraperitoneal injections of bathocuproine disulfonate in order to study the MAR. Under these conditions, a new type of mitochondrial morphology was discovered in the liver. Termed the "butternut squash" mitochondria, it coexisted with normal and swollen mitochondria. Western blot analyses of mitochondrial dynamics proteins showed an up-regulation of MFN-2 and OPA1 fusion proteins. Furthermore, isolated liver mitochondria displayed OXPHOS remodeling through a decrease in supercomplex activity with a concomitant increase at an individual level of complexes I and IV, higher respiratory rates at complex I and II levels, higher oligomycin-insensitive respiration, and lower respiratory control ratio values when compared to the control group. As expected, total ATP and ATP/ADP values were not significantly different, since animal's health was not compromised. As a whole, these results describe a compensatory and adaptive response of metabolism and bioenergetics under copper deprivation.


Assuntos
Adaptação Fisiológica/fisiologia , Cobre/deficiência , Metabolismo Energético/fisiologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Quelantes/farmacologia , Cobre/metabolismo , Masculino , Camundongos , Fenantrolinas/farmacologia , Espécies Reativas de Oxigênio
9.
Biometals ; 26(6): 1033-40, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24170205

RESUMO

Copper is an essential micronutrient that functions as an enzymatic cofactor in a wide range of cellular processes. Although adequate Cu levels are essential for normal metabolism, excess Cu can be toxic to cells. Cellular responses to copper deficiency and overload involve changes in the expression of genes directly and indirectly involved in copper metabolism. However little is known on the effect of physiological copper concentration on gene expression changes. In the current study we aimed to establish whether the expression of genes encoding enzymes related to cholesterol (hmgcs1, hmgcr, fdft) and fatty acid biosynthesis and LDL receptor can be induced by an iso-physiological copper concentration. The iso-physiological copper concentration was determined as the bioavailable plasmatic copper in a healthy adult population. In doing so, two blood cell lines (Jurkat and THP-1) were exposed for 6 or 24 h to iso- or supraphysiological copper concentrations. Our results indicated that in cells exposed to an iso-physiological copper concentration the early induction of genes involved in lipid metabolism was not mediated by copper itself but by the modification of the cellular redox status. Thus our results contributed to understand the involvement of copper in the regulation of cholesterol metabolism under physiological conditions.


Assuntos
Colesterol/biossíntese , Cobre/farmacologia , Expressão Gênica/efeitos dos fármacos , Histidina/análogos & derivados , Compostos Organometálicos/farmacologia , RNA Mensageiro/genética , Colesterol/genética , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Histidina/farmacologia , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Células Jurkat , Metabolismo dos Lipídeos/efeitos dos fármacos , Oxirredução , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
10.
Nat Aging ; 3(11): 1345-1357, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783816

RESUMO

In humans, aggregation of polyglutamine repeat (polyQ) proteins causes disorders such as Huntington's disease. Although plants express hundreds of polyQ-containing proteins, no pathologies arising from polyQ aggregation have been reported. To investigate this phenomenon, we expressed an aggregation-prone fragment of human huntingtin (HTT) with an expanded polyQ stretch (Q69) in Arabidopsis thaliana plants. In contrast to animal models, we find that Arabidopsis sp. suppresses Q69 aggregation through chloroplast proteostasis. Inhibition of chloroplast proteostasis diminishes the capacity of plants to prevent cytosolic Q69 aggregation. Moreover, endogenous polyQ-containing proteins also aggregate on chloroplast dysfunction. We find that Q69 interacts with the chloroplast stromal processing peptidase (SPP). Synthetic Arabidopsis SPP prevents polyQ-expanded HTT aggregation in human cells. Likewise, ectopic SPP expression in Caenorhabditis elegans reduces neuronal Q67 aggregation and subsequent neurotoxicity. Our findings suggest that synthetic plant proteins, such as SPP, hold therapeutic potential for polyQ disorders and other age-related diseases involving protein aggregation.


Assuntos
Arabidopsis , Agregados Proteicos , Animais , Humanos , Arabidopsis/genética , Peptídeos/genética , Neurônios/metabolismo , Caenorhabditis elegans/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA