Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biochem Biophys Res Commun ; 676: 78-83, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499367

RESUMO

Our previous studies demonstrated that mice with global CD47 deficiency are lean and resistant to diet or aging-associated obesity and metabolic complications. This protective effect is partially through modulating brown fat function. To definitively determine the role of brown fat CD47 in age-related metabolic homeostasis, inducible brown adipocyte-specific cd47 deficient mice were generated by crossbreeding cd47 floxed mice with UCP1-CreERT2 mice and characterized in this study. Efficient knockdown of CD47 in brown fat was achieved in both male and female mice through tamoxifen administration. Intriguingly, our findings indicated that male mice lacking CD47 in brown fat displayed a notable reduction in body weight starting at 23 weeks of age when housed at a temperature of 22 °C, in comparison to control mice. This reduction in weight was accompanied by improved glucose tolerance. Remarkably, this phenotype persisted even when the male mice were housed under thermoneutral conditions (30 °C). Conversely, female knockout mice did not exhibit significant changes in weight throughout the study. In addition to the enhanced glucose homeostasis, brown fat CD47 deficiency in male mice also prevented age-related hypertriglyceridemia and non-alcoholic fatty liver disease. Furthermore, the brown fat tissue of male knockout mice exhibited reduced whitening, while maintaining comparable levels of thermogenic markers. This suggests the involvement of a thermogenesis-independent mechanism. Altogether, these findings highlight a sex difference in the impact of brown adipocyte CD47 deficiency on age-related weight changes and glucose homeostasis.


Assuntos
Adipócitos Marrons , Antígeno CD47 , Feminino , Camundongos , Animais , Masculino , Adipócitos Marrons/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Caracteres Sexuais , Camundongos Knockout , Tecido Adiposo Marrom/metabolismo , Homeostase , Glucose/metabolismo , Termogênese/genética , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
2.
Liver Int ; 42(4): 829-841, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35129307

RESUMO

BACKGROUND & AIMS: With the epidemic burden of obesity and metabolic diseases, nonalcoholic fatty liver disease (NAFLD) including steatohepatitis (NASH) has become the most common chronic liver disease in the western world. NASH may progress to cirrhosis and hepatocellular carcinoma. Currently, no treatment is available for NASH. Therefore, finding a therapy for NAFLD/NASH is in urgent need. Previously we have demonstrated that mice lacking CD47 or its ligand thrombospondin1 (TSP1) are protected from obesity-associated NALFD. This suggests that CD47 blockade might be a novel treatment for obesity-associated metabolic disease. Thus, in this study, the therapeutic potential of an anti-CD47 antibody in NAFLD progression was determined. METHODS: Both diet-induced NASH mouse model and human NASH organoid model were utilized in this study. NASH was induced in mice by feeding with diet enriched with fat, fructose and cholesterol (AMLN diet) for 20 weeks and then treated with anti-CD47 antibody or control IgG for 4 weeks. Body weight, body composition and liver phenotype were analysed. RESULTS: We found that anti-CD47 antibody treatment did not affect mice body weight, fat mass or liver steatosis. However, liver immune cell infiltration, inflammation and fibrosis were significantly reduced by anti-CD47 antibody treatment. In vitro data further showed that CD47 blockade prevented hepatic stellate cell activation and NASH progression in a human NASH organoid model. CONCLUSION: Collectively, these data suggest that anti-CD47 antibody might be a new therapeutic option for obesity-associated NASH and liver fibrosis.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Antígeno CD47 , Dieta Hiperlipídica , Modelos Animais de Doenças , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia
3.
Cardiovasc Drugs Ther ; 36(2): 201-215, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33459922

RESUMO

PURPOSE: HIV infection is consistently associated with an increased risk of atherosclerotic cardiovascular disease, but the underlying mechanisms remain elusive. HIV protein Tat, a transcriptional activator of HIV, has been shown to activate NF-κB signaling and promote inflammation in vitro. However, the atherogenic effects of HIV Tat have not been investigated in vivo. Macrophages are one of the major cell types involved in the initiation and progression of atherosclerosis. We and others have previously revealed the important role of IκB kinase ß (IKKß), a central inflammatory coordinator through activating NF-κB, in the regulation of macrophage functions and atherogenesis. This study investigated the impact of HIV Tat exposure on macrophage functions and atherogenesis. METHODS: To investigate the effects of Tat on macrophage IKKß activation and atherosclerosis development in vivo, myeloid-specific IKKß-deficient LDLR-deficient (IKKßΔMyeLDLR-/-) mice and their control littermates (IKKßF/FLDLR-/-) were exposed to recombinant HIV protein Tat. RESULTS: Exposure to Tat significantly increased atherosclerotic lesion size and plaque vulnerability in IKKßF/FLDLR-/- but not IKKßΔMyeLDLR-/- mice. Deficiency of myeloid IKKß attenuated Tat-elicited macrophage inflammatory responses and atherosclerotic lesional inflammation in IKKßΔMyeLDLR-/- mice. Further, RNAseq analysis demonstrated that HIV protein Tat affects the expression of many atherosclerosis-related genes in vitro in an IKKß-dependent manner. CONCLUSIONS: Our findings reveal atherogenic effects of HIV protein Tat in vivo and demonstrate a pivotal role of myeloid IKKß in Tat-driven atherogenesis.


Assuntos
Aterosclerose , Infecções por HIV , Animais , Aterosclerose/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Lipoproteínas LDL , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases , Receptores de LDL/metabolismo
4.
Biochem Biophys Res Commun ; 575: 14-19, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34454175

RESUMO

Brown and beige adipocytes burn energy to produce heat and could serve as a therapeutic target to counteract metabolic diseases including obesity and type 2 diabetes. Aging is associated with reduced brown fat mass and thermogenic capacity and a risk factor for metabolic diseases. Our previous studies implicated a role for CD47 in regulating brown fat function and energy balance in young adult animals. In this study, we further determined its role in natural aging related metabolic disorders. The results demonstrated that aged CD47 deficient mice (under normal chow diet) had reduced body weight and fat mass, and improved glucose tolerance as compared to aged wild type (WT) mice. Indirect calorimetry result showed that food intake and total activity were comparable between two genotypes. However, CD47 deficient mice had increased energy expenditure and better cold tolerance, accompanied by increased white adipose tissue browning and well-maintained juvenile morphology of brown adipose tissue (BAT). Moreover, transcriptome (RNA-seq) and pathway enrichment analysis revealed that BAT from aged CD47 deficient mice had upregulated genes involving in mitochondria oxidative phosphorylation, thermogenesis, fatty acid metabolism, and valine, leucine and isoleucine (BCAA) degradation, indicating the activated BAT status in aged CD47 deficient mice. Collectively, these data suggest that blocking CD47 signaling protects mice from natural aging-associated obesity and glucose intolerance, partially though activation and expansion of the thermogenic machinery, further supporting that CD47 maybe a potential target for aging related metabolic disorder.


Assuntos
Tecido Adiposo Marrom/metabolismo , Antígeno CD47/deficiência , Doenças Metabólicas/prevenção & controle , Obesidade/prevenção & controle , Fatores Etários , Envelhecimento , Animais , Antígeno CD47/genética , Modelos Animais de Doenças , Glucose/metabolismo , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Fosforilação Oxidativa , Termogênese
5.
J Hepatol ; 70(5): 930-940, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30677459

RESUMO

BACKGROUND & AIMS: The most prescribed non-nucleoside reverse transcriptase inhibitor, efavirenz, has been associated with elevated risk of dyslipidemia and hepatic steatosis in HIV-infected patients but the underlying mechanisms remain elusive. Herein, we investigated the role of pregnane X receptor (PXR) in mediating the adverse effects of efavirenz on lipid homeostasis. METHODS: Cell-based reporter assays, primary cell culture, and multiple mouse models including conditional knockout and humanized mice were combined to study the impact of efavirenz on PXR activities and lipid homeostasis in vitro and in vivo. A novel liver-specific Pxr knockout mouse model was also generated to determine the contribution of hepatic PXR signaling to efavirenz-elicited dyslipidemia and hepatic steatosis. RESULTS: We found that efavirenz is a potent PXR-selective agonist that can efficiently activate PXR and induce its target gene expression in vitro and in vivo. Treatment with efavirenz-induced hypercholesterolemia and hepatic steatosis in mice but deficiency of hepatic PXR abolished these adverse effects. Interestingly, efavirenz-mediated PXR activation regulated the expression of several key hepatic lipogenic genes including fatty acid transporter CD36 and cholesterol biosynthesis enzyme squalene epoxidase (SQLE), leading to increased lipid uptake and cholesterol biosynthesis in hepatic cells. While CD36 is a known PXR target gene, we identified a DR-2-type of PXR-response element in the SQLE promoter and established SQLE as a direct transcriptional target of PXR. Since PXR exhibits considerable differences in its pharmacology across species, we also confirmed these findings in PXR-humanized mice and human primary hepatocytes. CONCLUSIONS: The widely prescribed antiretroviral drug efavirenz induces hypercholesterolemia and hepatic steatosis by activating PXR signaling. Activation of PXR should be taken into consideration for patients undergoing long-term treatment with PXR agonistic antiretroviral drugs. LAY SUMMARY: Efavirenz is widely prescribed for HIV-infected patients but has some side effects. It can increase lipid levels in patients' blood and liver. Here we show that efavirenz can activate a unique liver protein called PXR which mediates the adverse effects of efavirenz on lipid levels in mouse models.


Assuntos
Benzoxazinas/efeitos adversos , Fígado Gorduroso/induzido quimicamente , Hipercolesterolemia/induzido quimicamente , Receptor de Pregnano X/agonistas , Inibidores da Transcriptase Reversa/efeitos adversos , Alcinos , Animais , Antígenos CD36/fisiologia , Colesterol/biossíntese , Ciclopropanos , Hepatócitos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Pregnano X/fisiologia , Transdução de Sinais/fisiologia , Esqualeno Mono-Oxigenase/fisiologia
6.
Arterioscler Thromb Vasc Biol ; 38(7): 1468-1478, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724817

RESUMO

OBJECTIVE: The Wnt/ß-catenin signaling is an ancient and evolutionarily conserved pathway that regulates essential aspects of cell differentiation, proliferation, migration and polarity. Canonical Wnt/ß-catenin signaling has also been implicated in the pathogenesis of atherosclerosis. Macrophage is one of the major cell types involved in the initiation and progression of atherosclerosis, but the role of macrophage ß-catenin in atherosclerosis remains elusive. This study aims to investigate the impact of ß-catenin expression on macrophage functions and atherosclerosis development. APPROACH AND RESULTS: To investigate the role of macrophage canonical Wnt/ß-catenin signaling in atherogenesis, we generated ß-cateninΔmyeLDLR-/- mice (low-density lipoprotein receptor-deficient mice with myeloid-specific ß-catenin deficiency). As expected, deletion of ß-catenin decreased macrophage adhesion and migration properties in vitro. However, deficiency of ß-catenin significantly increased atherosclerotic lesion areas in the aortic root of LDLR-/- (low-density lipoprotein receptor-deficient) mice without affecting the plasma lipid levels and atherosclerotic plaque composition. Mechanistic studies revealed that ß-catenin can regulate activation of STAT (signal transducer and activator of transcription) pathway in macrophages, and ablation of ß-catenin resulted in STAT3 downregulation and STAT1 activation, leading to elevated macrophage inflammatory responses and increased atherosclerosis. CONCLUSIONS: This study demonstrates a critical role of myeloid ß-catenin expression in atherosclerosis by modulating macrophage inflammatory responses.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica , Receptores de LDL/deficiência , beta Catenina/deficiência , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Adesão Celular , Movimento Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Lipídeos/sangue , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Células RAW 264.7 , Receptores de LDL/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Fatores de Tempo , Via de Sinalização Wnt , beta Catenina/genética
8.
JHEP Rep ; 6(4): 101019, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38455470

RESUMO

Background & Aims: Recent studies have implicated platelets, particularly α-granules, in the development of non-alcoholic steatohepatitis (NASH). However, the specific mechanisms involved have yet to be determined. Notably, thrombospondin 1 (TSP1) is a major component of the platelet α-granules released during platelet activation. Hence, we aimed to determine the role of platelet-derived TSP1 in NASH. Methods: Platelet-specific Tsp1 knockout mice (TSP1Δpf4) and their wild-type littermates (TSP1F/F) were used. NASH was induced by feeding the mice with a diet enriched in fat, sucrose, fructose, and cholesterol (AMLN diet). A human liver NASH organoid model was also employed. Results: Although TSP1 deletion in platelets did not affect diet-induced steatosis, TSP1Δpf4 mice exhibited attenuated NASH and liver fibrosis, accompanied by improvements in plasma glucose and lipid homeostasis. Furthermore, TSP1Δpf4 mice showed reduced intrahepatic platelet accumulation, activation, and chemokine production, correlating with decreased immune cell infiltration into the liver. Consequently, this diminished proinflammatory signaling in the liver, thereby mitigating the progression of NAFLD. Moreover, in vitro data revealed that co-culturing TSP1-deficient platelets in a human liver NASH organoid model attenuated hepatic stellate cell activation and NASH progression. Additionally, TSP1-deficient platelets play a role in regulating brown fat endocrine function, specifically affecting Nrg4 (neuregulin 4) production. Crosstalk between brown fat and the liver may also influence the progression of NAFLD. Conclusions: These data suggest that platelet α-granule-derived TSP1 is a significant contributor to diet-induced NASH and fibrosis, potentially serving as a new therapeutic target for this severe liver disease. Impact and implications: Recent studies have implicated platelets, specifically α-granules, in the development of non-alcoholic steatohepatitis, yet the precise mechanisms remain unknown. In this study, through the utilization of a tissue-specific knockout mouse model and human 3D liver organoid, we demonstrated that platelet α-granule-derived TSP1 significantly contributes to diet-induced non-alcoholic steatohepatitis and fibrosis. This contribution is, in part, attributed to the regulation of intrahepatic immune cell infiltration and potential crosstalk between fat and the liver. These findings suggest that platelet-derived TSP1 may represent a novel therapeutic target in non-alcoholic fatty liver disease.

9.
Arch Biochem Biophys ; 537(1): 21-30, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23810294

RESUMO

Celastrol (CEL) is known as a potent inducer of heat shock protein (HSP) in non-muscle cells and exhibits cytoprotective function and inhibitory effects on proteasome and glucocorticoid receptor activities. To investigate an anti-atrophic effect of CEL on skeletal muscle cells, C2C12 myotubes were treated with 150 µM dexamethasone (DEX) for 24h and 1.5 µM CEL was added for the last 6h during the 24h DEX treatment. Compared to the control, the myotube diameter was reduced by a factor of 0.30 by DEX, but CEL treatment almost abrogated the DEX-induced atrophy. CEL treatment also increased expression of HSP72 and phosphorylation of heat shock transcription factor 1 (p-HSF1) 11-fold and 3.4-fold, respectively, as well as accumulation of p-HSF1 in the nucleus. Furthermore, CEL treatment elevated activities of Akt1, p70/S6K and ERK1/2 2.0- to 4.4-fold whereas DEX had no effect on these signaling activities. Inhibition of Akt1 and ERK1/2 pathways by specific inhibitors confirmed CEL-induced anti-atrophic effect. Moreover, DEX-mediated downregulation of FoxO3 phosphorylation and upregulation of MuRF1 expression and proteasome activity were abrogated by CEL treatment. These results demonstrate a novel anti-atrophic function of CEL in muscle cells via both activation of protein anabolic signals and suppression of catabolic signaling activities.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição/metabolismo , Triterpenos/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Triterpenos Pentacíclicos , Inibidores de Proteínas Quinases/administração & dosagem
10.
Sci Rep ; 13(1): 20193, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980376

RESUMO

Thrombospondin1 (TSP1) is a multifunctional matricellular protein. Previously, we demonstrated that TSP1 plays a pivotal role in obesity-related inflammation and insulin resistance (IR) by modulating macrophage accumulation and activation in adipose tissue. Moreover, in our in vitro studies, a CD36-derived peptide, functioning as a TSP1 antagonist, effectively inhibited TSP1-induced proinflammatory macrophage activation. However, whether this CD36 peptide can inhibit obesity-induced inflammation and IR in vivo is unknown and determined in this study in a high fat diet-induced obese mouse model (DIO). CD36 peptide or control peptide was intraperitoneally administered into the established obese mice triweekly for 6 weeks. We found that CD36 peptide treatment didn't affect obesity or weight gain but significantly reduced proinflammatory cytokine production systemically and in visceral fat tissue. Adipose tissue exhibited fewer crown-like structures and reduced macrophage infiltration. CD36 peptide treatment also attenuated the proinflammatory phenotype of bone marrow derived macrophages from obese mice. Furthermore, CD36 peptide treatment improved glucose tolerance and insulin sensitivity, and mitigated obesity-related fatty liver disease and kidney damage. Collectively, this study suggests that the CD36 peptide, as a TSP1 antagonist, shows promise as a novel therapeutic approach for managing obesity-related metabolic disorders.


Assuntos
Resistência à Insulina , Obesidade , Camundongos , Animais , Camundongos Obesos , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/genética , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/genética , Tecido Adiposo/metabolismo , Peptídeos/metabolismo , Camundongos Endogâmicos C57BL
11.
Sci Rep ; 13(1): 2748, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797364

RESUMO

Previous study from our lab has revealed a new role of CD47 in regulating adipose tissue function, energy homeostasis and the development of obesity and metabolic disease in CD47 deficient mice. In this study, the therapeutic potential of an antisense oligonucleotide (ASO) targeting to CD47 in obesity and its-associated complications was determined in two obese mouse models (diet induced and genetic models). In diet induced obesity, male C57BL6 mice were fed with high fat (HF) diet to induce obesity and then treated with CD47ASO or control ASO for 8 weeks. In genetic obese mouse model, male six-week old ob/ob mice were treated with ASOs for 9 weeks. We found that CD47ASO treatment reduced HF diet-induced weight gain, decreased fat mass, prevented dyslipidemia, and improved glucose tolerance. These changes were accompanied by reduced inflammation in white adipose tissue and decreased hepatic steatosis. This protection was also seen in CD47ASO treated ob/ob mice. Mechanistically, CD47ASO treatment increased mice physical activity and energy expenditure, contributing to weight loss and improved metabolic outcomes in obese mice. Collectively, these findings suggest that CD47ASO might serve as a new treatment option for obesity and its-associated metabolic complications.


Assuntos
Resistência à Insulina , Oligonucleotídeos Antissenso , Animais , Masculino , Camundongos , Antígeno CD47/metabolismo , Dieta Hiperlipídica , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/genética
12.
Environ Health Perspect ; 130(11): 117003, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36331819

RESUMO

BACKGROUND: Perfluorooctane sulfonate (PFOS) is a persistent environmental pollutant that has become a significant concern around the world. Exposure to PFOS may alter gut microbiota and liver metabolic homeostasis in mammals, thereby increasing the risk of cardiometabolic diseases. Diets high in soluble fibers can ameliorate metabolic disease risks. OBJECTIVES: We aimed to test the hypothesis that soluble fibers (inulin or pectin) could modulate the adverse metabolic effects of PFOS by affecting microbe-liver metabolism and interactions. METHODS: Male C57BL/6J mice were fed an isocaloric diet containing different fibers: a) inulin (soluble), b) pectin (soluble), or c) cellulose (control, insoluble). The mice were exposed to PFOS in drinking water (3µg/g per day) for 7 wk. Multi-omics was used to analyze mouse liver and cecum contents. RESULTS: In PFOS-exposed mice, the number of differentially expressed genes associated with atherogenesis and hepatic hyperlipidemia were lower in those that were fed soluble fiber than those fed insoluble fiber. Shotgun metagenomics showed that inulin and pectin protected against differences in microbiome community in PFOS-exposed vs. control mice. It was found that the plasma PFOS levels were lower in inulin-fed mice, and there was a trend of lower liver accumulation of PFOS in soluble fiber-fed mice compared with the control group. Soluble fiber intake ameliorated the effects of PFOS on host hepatic metabolism gene expression and cecal content microbiome structure. DISCUSSIONS: Results from metabolomic, lipidomic, and transcriptomic studies suggest that inulin- and pectin-fed mice were less susceptible to PFOS-induced liver metabolic disturbance, hepatic lipid accumulation, and transcriptional changes compared with control diet-fed mice. Our study advances the understanding of interaction between microbes and host under the influences of environmental pollutants and nutrients. The results provide new insights into the microbe-liver metabolic network and the protection against environmental pollutant-induced metabolic diseases by high-fiber diets. https://doi.org/10.1289/EHP11360.


Assuntos
Poluentes Ambientais , Inulina , Camundongos , Masculino , Animais , Inulina/metabolismo , Inulina/farmacologia , Lipidômica , Metagenômica , Transcriptoma , Camundongos Endogâmicos C57BL , Fígado , Poluentes Ambientais/metabolismo , Fibras na Dieta/metabolismo , Fibras na Dieta/farmacologia , Pectinas/metabolismo , Pectinas/farmacologia , Mamíferos
13.
JHEP Rep ; 3(1): 100193, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33294831

RESUMO

BACKGROUND & AIMS: Thrombospondin 1 (TSP1) is a multifunctional matricellular protein. We previously showed that TSP1 has an important role in obesity-associated metabolic complications, including inflammation, insulin resistance, cardiovascular, and renal disease. However, its contribution to obesity-associated non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD or NASH) remains largely unknown; thus, we aimed to determine its role. METHODS: High-fat diet or AMLN (amylin liver NASH) diet-induced obese and insulin-resistant NAFLD/NASH mouse models were utilised, in addition to tissue-specific Tsp1-knockout mice, to determine the contribution of different cellular sources of obesity-induced TSP1 to NAFLD/NASH development. RESULTS: Liver TSP1 levels were increased in experimental obese and insulin-resistant NAFLD/NASH mouse models as well as in obese patients with NASH. Moreover, TSP1 deletion in adipocytes did not protect mice from diet-induced NAFLD/NASH. However, myeloid/macrophage-specific TSP1 deletion protected mice against obesity-associated liver injury, accompanied by reduced liver inflammation and fibrosis. Importantly, this protection was independent of the levels of obesity and hepatic steatosis. Mechanistically, through an autocrine effect, macrophage-derived TSP1 suppressed Smpdl3b expression in liver, which amplified liver proinflammatory signalling (Toll-like receptor 4 signal pathway) and promoted NAFLD progression. CONCLUSIONS: Macrophage-derived TSP1 is a significant contributor to obesity-associated NAFLD/NASH development and progression and could serve as a therapeutic target for this disease. LAY SUMMARY: Obesity-associated non-alcoholic fatty liver disease is a most common chronic liver disease in the Western world and can progress to liver cirrhosis and cancer. No treatment is currently available for this disease. The present study reveals an important factor (macrophage-derived TSP1) that drives macrophage activation and non-alcoholic fatty liver disease development and progression and that could serve as a therapeutic target for non-alcoholic fatty liver disease/steatohepatitis.

14.
Environ Health Perspect ; 129(12): 127001, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34851150

RESUMO

BACKGROUND: Exposure to plastic-associated endocrine disrupting chemicals (EDCs) has been associated with an increased risk of cardiovascular disease (CVD) in humans. However, the underlying mechanisms for this association are unclear. Many EDCs have been shown to function as ligands of the nuclear receptor pregnane X receptor (PXR), which functions as xenobiotic sensor but also has pro-atherogenic effects in vivo. OBJECTIVE: We sought to investigate the contribution of PXR to the adverse effects dicyclohexyl phthalate (DCHP), a widely used phthalate plasticizer, on lipid homeostasis and CVD risk factors. METHODS: Cell-based assays, primary organoid cultures, and PXR conditional knockout and PXR-humanized mouse models were used to investigate the impact of DCHP exposure on PXR activation and lipid homeostasis in vitro and in vivo. Targeted lipidomics were performed to measure circulating ceramides, novel predictors for CVD. RESULTS: DCHP was identified as a potent PXR-selective agonist that led to higher plasma cholesterol levels in wild-type mice. DCHP was then demonstrated to activate intestinal PXR to elicit hyperlipidemia by using tissue-specific PXR-deficient mice. Interestingly, DCHP exposure also led to higher circulating ceramides in a PXR-dependent manner. DCHP-mediated PXR activation stimulated the expression of intestinal genes mediating lipogenesis and ceramide synthesis. Given that PXR exhibits considerable species-specific differences in receptor pharmacology, PXR-humanized mice were also used to replicate these findings. DISCUSSION: Although the adverse health effects of several well-known phthalates have attracted considerable attention, little is known about the potential impact of DCHP on human health. Our studies demonstrate that DCHP activated PXR to induce hypercholesterolemia and ceramide production in mice. These results indicate a potentially important role of PXR in contributing to the deleterious effects of plastic-associated EDCs on cardiovascular health in humans. Testing PXR activation should be considered for risk assessment of phthalates and other EDCs. https://doi.org/10.1289/EHP9262.


Assuntos
Receptores de Esteroides , Animais , Homeostase , Lipídeos , Camundongos , Camundongos Knockout , Ácidos Ftálicos , Receptor de Pregnano X , Receptores de Esteroides/agonistas , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
15.
J Cell Physiol ; 222(2): 313-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19847807

RESUMO

Hibernators like bats show only marginal muscle atrophy during prolonged hibernation. The current study was designed to test the hypothesis that hibernators use periodic arousal to increase protein anabolism that compensates for the continuous muscle proteolysis during disuse. To test this hypothesis, we investigated the effects of 3-month hibernation (HB) and 7-day post-arousal torpor (TP) followed by re-arousal (RA) on signaling activities in the pectoral muscles of summer-active (SA) and dormant Murina leucogaster bats. The bats did not lose muscle mass relative to body mass during the HB or TP-to-RA period. For the first 30-min following arousal, the peak amplitude and frequency of electromyographic spikes increased 3.1- and 1.4-fold, respectively, indicating massive myofiber recruitment and elevated motor signaling during shivering. Immunoblot analyses of whole-tissue lysates revealed several principal outcomes: (1) for the 3-month HB, the phosphorylation levels of Akt1 (p-Akt1) and p-mTOR decreased significantly compared to SA bats, but p-FoxO1 levels remained unaltered; (2) for the TP-to-RA period, p-Akt1 and p-FoxO1 varied little, while p-mTOR showed biphasic oscillation; (3) proteolytic signals (i.e., atrogin-1, MuRF1, Skp2 and calpain-1) remained constant during the HB and TP-to-RA period. These results suggest that the resistive properties of torpid bat muscle against atrophy might be attained primarily by relatively constant proteolysis in combination with oscillatory anabolic activity (e.g., p-mTOR) corresponding to the frequency of arousals occurring throughout hibernation.


Assuntos
Nível de Alerta , Quirópteros/metabolismo , Hibernação , Proteínas Musculares/metabolismo , Atrofia Muscular/prevenção & controle , Músculos Peitorais/metabolismo , Periodicidade , Estremecimento , Animais , Western Blotting , Temperatura Corporal , Calpaína/metabolismo , Eletromiografia , Fatores de Transcrição Forkhead/metabolismo , Proteínas I-kappa B/metabolismo , Masculino , Contração Muscular , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Tamanho do Órgão , Músculos Peitorais/patologia , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estações do Ano , Transdução de Sinais , Serina-Treonina Quinases TOR , Ubiquitina-Proteína Ligases/metabolismo
16.
Cell Physiol Biochem ; 24(5-6): 537-46, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19910694

RESUMO

At times, exercise accompanied by its anabolic effects is not a tractable countermeasure to muscle atrophy. Instead, training is often attempted after the affected muscle has atrophied greatly as a result of unloading. This study was designed to elucidate stress and signaling mechanisms underlying a process of muscle catch-up growth as a result of transitory exercise during unloading. Rats were exercised daily with a routine of 20- or 40-minute treadmill running (at 60% of maximum oxygen uptake) during the second week of a two-week hindlimb suspension. We examined the expression and activation of heat shock proteins and anabolic and proteolytic markers in the rat soleus muscle. Muscle mass relative to body mass decreased 2.4-fold in the unloaded group (HU) with respect to controls but decreased only 1.7-fold in the 40-min trained group (HT40) (P < 0.05) - equivalent to a 1.4-fold increase in the relative muscle mass over HU. Immunoblotting analyses on whole-tissue lysates demonstrated the following: (1) HSP72 and alphaB-crystallin were upregulated 7- and 2.5-fold, respectively, in HT40 versus HU; (2) phosphorylation of Akt1 and p70/S6K decreased only slightly in HU; (3) when compared to HU, HT40 phosphorylation of Akt1, S6K, and FoxO1 increased 1.4- to 3.0-fold while phosphorylation of FoxO3 was unchanged; and (4) activities of the ubiquitin E3 ligases, calpain 1 and caspase-3 increased 2- to 4-fold in the unloaded groups regardless of exercise duration. These results suggest that the significant upregulation of chaperones and anabolic markers (e.g., HSP72, p-Akt1, p-S6K) in HT40, along with the lack of the training effect on proteolytic activity, is likely crucial for muscle mass catch-up in the unloaded muscle.


Assuntos
Músculo Esquelético/fisiologia , Atrofia Muscular/metabolismo , Condicionamento Físico Animal , Estresse Fisiológico , Animais , Calpaína/metabolismo , Caspase 3/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Choque Térmico/metabolismo , Elevação dos Membros Posteriores , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
17.
JCI Insight ; 4(3)2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30728326

RESUMO

Quetiapine, one of the most prescribed atypical antipsychotics, has been associated with hyperlipidemia and an increased risk for cardiovascular disease in patients, but the underlying mechanisms remain unknown. Here, we identified quetiapine as a potent and selective agonist for pregnane X receptor (PXR), a key nuclear receptor that regulates xenobiotic metabolism in the liver and intestine. Recent studies have indicated that PXR also plays an important role in lipid homeostasis. We generated potentially novel tissue-specific PXR-KO mice and demonstrated that quetiapine induced hyperlipidemia by activating intestinal PXR signaling. Quetiapine-mediated PXR activation stimulated the intestinal expression of cholesterol transporter Niemann-Pick C1-Like 1 (NPC1L1) and microsomal triglyceride transfer protein (MTP), leading to increased intestinal lipid absorption. While NPC1L1 is a known PXR target gene, we identified a DR-1-type PXR-response element in the MTP promoter and established MTP as a potentially novel transcriptional target of PXR. Quetiapine's effects on PXR-mediated gene expression and cholesterol uptake were also confirmed in cultured murine enteroids and human intestinal cells. Our findings suggest a potential role of PXR in mediating adverse effects of quetiapine in humans and provide mechanistic insights for certain atypical antipsychotic-associated dyslipidemia.

18.
J Cell Biochem ; 104(2): 642-56, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18181155

RESUMO

Prolonged disuse of skeletal muscle causes significant loss of myofibrillar contents, muscle tension, and locomotory capacity. However, hibernating mammals like bats appear to deviate from this trend. Although low functional demands during winter dormancy has been implicated as a factor contributing to reduced muscle loss, the precise mechanism that actively prevents muscle atrophy remains unclear. We explored proteomic and molecular assessments of bat muscle to test a hypothesis that expression levels of major myofibrillar proteins are retained during hibernation, with periodic arousals utilized as a potential mechanism to prevent disuse atrophy. We examined changes in myofibrillar contents and contractile properties of the pectoral or biceps brachii muscles of the bat Murina leucogaster in summer active (SA), hibernation (HB) and early phase of arousal (AR) states. We found the bat muscles did not show any sign of atrophy or tension reduction over the 3-month winter dormancy. Levels of most sarcomeric and metabolic proteins examined were maintained through hibernation, with some proteins (e.g., actin and voltage dependent anion channel 1) 1.6- to 1.8-fold upregulated in HB and AR compared to SA. Moreover, expression levels of six heat shock proteins (HSPs) including glucose-regulated protein 75 precursor were similar among groups, while the level of HSP70 was even 1.7-fold higher in HB and AR than in SA. Thus, considering the nature of arousal with strenuous muscle shivering and heat stress, upregulation or at least balanced regulation of the chaperones (HSPs) would contribute to retaining muscle properties during prolonged disuse of the bat.


Assuntos
Hibernação , Proteínas dos Microfilamentos/análise , Atrofia Muscular , Proteômica , Animais , Nível de Alerta , Quirópteros , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico , Mamíferos , Tono Muscular , Miofibrilas/química , Estações do Ano , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA