Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Anim Sci Biotechnol ; 14(1): 32, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814325

RESUMO

BACKGROUND: Anethole (AN) is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals. However, no study has examined the effect of AN on porcine embryonic development. Therefore, we investigated the effect of AN on the development of porcine embryos and the underlying mechanism. RESULTS: We cultured porcine in vitro-fertilized embryos in medium with AN (0, 0.3, 0.5, and 1 mg/mL) for 6 d. AN at 0.5 mg/mL significantly increased the blastocyst formation rate, trophectoderm cell number, and cellular survival rate compared to the control. AN-supplemented embryos exhibited significantly lower reactive oxygen species levels and higher glutathione levels than the control. Moreover, AN significantly improved the quantity of mitochondria and mitochondrial membrane potential, and increased the lipid droplet, fatty acid, and ATP levels. Interestingly, the levels of proteins and genes related to the sonic hedgehog (SHH) signaling pathway were significantly increased by AN. CONCLUSIONS: These results revealed that AN improved the developmental competence of porcine preimplantation embryos by activating SHH signaling against oxidative stress and could be used for large-scale production of high-quality porcine embryos.

2.
PeerJ ; 11: e15618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377789

RESUMO

Luteolin (Lut), a polyphenolic compound that belongs to the flavone subclass of flavonoids, possesses anti-inflammatory, cytoprotective, and antioxidant activities. However, little is known regarding its role in mammalian oocyte maturation. This study examined the effect of Lut supplementation during in vitro maturation (IVM) on oocyte maturation and subsequent developmental competence after somatic cell nuclear transfer (SCNT) in pigs. Lut supplementation significantly increased the proportions of complete cumulus cell expansion and metaphase II (MII) oocytes, compared with control oocytes. After parthenogenetic activation or SCNT, the developmental competence of Lut-supplemented MII oocytes was significantly enhanced, as indicated by higher rates of cleavage, blastocyst formation, expanded or hatching blastocysts, and cell survival, as well as increased cell numbers. Lut-supplemented MII oocytes exhibited significantly lower levels of reactive oxygen species and higher levels of glutathione than control MII oocytes. Lut supplementation also activated lipid metabolism, assessed according to the levels of lipid droplets, fatty acids, and ATP. The active mitochondria content and mitochondrial membrane potential were significantly increased, whereas cytochrome c and cleaved caspase-3 levels were significantly decreased, by Lut supplementation. These results suggest that Lut supplementation during IVM improves porcine oocyte maturation through the reduction of oxidative stress and mitochondria-mediated apoptosis.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Luteolina , Suínos , Animais , Luteolina/farmacologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oogênese , Oócitos , Suplementos Nutricionais , Mamíferos
3.
Toxicol In Vitro ; 91: 105615, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37207789

RESUMO

Cadmium (Cd) is toxic metal that can induce various diseases, such as cardiovascular, nervous, and reproductive systems. This study investigated the effect of Cd exposure on porcine oocyte maturation and the underlying mechanism. Porcine cumulus-oocyte complexes were exposed various Cd concentration and tauroursodeoxycholic acid (TUDCA), an inhibitor of endoplasmic reticulum (ER) stress during in vitro maturation (IVM). After IVM, we evaluated meiotic maturation, ER stress, and oocyte quality by Cd exposure. Cd exposure inhibited cumulus cell expansion and meiotic maturation, increased oocyte degeneration, and induced ER stress. The levels of spliced XBP1 and ER stress-associated transcripts, markers of ER stress, were elevated in Cd-treated cumulus-oocyte complexes and denuded oocytes during IVM. Moreover, Cd-induced ER stress impaired oocyte quality by disrupting mitochondrial function and elevating intracellular reactive oxygen species levels while decreasing ER function. Interestingly, TUDCA supplementation significantly decreased the expression of ER stress-related genes and increased the quantity of ER compared with the Cd treatment. Additionally, TUDCA was also able to rescue excessive levels of ROS and restore normal mitochondrial function. Moreover, the addition of TUDCA under Cd exposure greatly ameliorated Cd-mediated detrimental effects on meiotic maturation and oocyte quality, including cumulus cell expansion and MII rate. These findings suggest that Cd exposure during IVM impairs the meiotic maturation of oocytes by inducing of ER stress.


Assuntos
Cádmio , Técnicas de Maturação in Vitro de Oócitos , Animais , Suínos , Cádmio/toxicidade , Cádmio/metabolismo , Oócitos , Estresse do Retículo Endoplasmático
4.
Toxicology ; 480: 153314, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084880

RESUMO

Arsenic (AS), an environmental contaminant, is a known human carcinogen that can cause cancer of the lung, liver, and skin. Furthermore, AS induces oxidative stress and mitochondrial impairments in mammalian cells. However, limited information is available on the effect of AS exposure on oocyte maturation of porcine, whose anatomy, physiology, and metabolism are similar to those of human. Therefore, we examined the effect of AS exposure on the in vitro maturation (IVM) of porcine oocytes and the possible underlying mechanisms. Cumulus-cell enclosed oocytes were cultured with or without AS for maturation, and then were used for analyses. This study indicated that AS under a concentration of 1 µM significantly increased the abnormal expansion of cumulus cells and the number of oocytes maintained in meiotic arrest. In addition, AS exposure significantly reduced subsequent development of embryos and increased the rate of apoptosis of blastocysts following parthenogenetic activation (PA) and in vitro fertilization (IVF). Moreover, AS exposure induced oxidative stress with increased reactive oxygen species (ROS), and decreased glutathione (GSH), leading to reduced mitochondrial membrane potential, mitochondrial quantity, DNA damage, excessive autophagy activity, and early apoptosis in porcine oocytes. Taken together, the results demonstrated that AS exposure exerts several negative effects, such as meiotic defects and embryo developmental arrest by causing mitochondrial dysfunction and apoptosis via inducing oxidative stress.


Assuntos
Arsênio , Técnicas de Maturação in Vitro de Oócitos , Animais , Apoptose , Arsênio/metabolismo , Blastocisto , Carcinógenos/metabolismo , Desenvolvimento Embrionário , Feminino , Glutationa/metabolismo , Humanos , Técnicas de Maturação in Vitro de Oócitos/métodos , Mamíferos/metabolismo , Mitocôndrias , Oócitos , Estresse Oxidativo , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Suínos
5.
Front Cell Dev Biol ; 9: 709574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692674

RESUMO

Developmental defects in somatic cell nuclear transfer (SCNT) embryos are principally attributable to incomplete epigenetic reprogramming. Small-molecule inhibitors such as histone methyltransferase inhibitors (HMTi) and histone deacetylase inhibitors (HDACi) have been used to improve reprogramming efficiency of SCNT embryos. However, their possible synergistic effect on epigenetic reprogramming has not been studied. In this study, we explored whether combined treatment with an HMTi (chaetocin) and an HDACi (trichostatin A; TSA) synergistically enhanced epigenetic reprogramming and the developmental competence of porcine SCNT embryos. Chaetocin, TSA, and the combination significantly increased the cleavage and blastocyst formation rate, hatching/hatched blastocyst rate, and cell numbers and survival rate compared to control embryos. In particular, the combined treatment improved the rate of development to blastocysts more so than chaetocin or TSA alone. TSA and combined chaetocin/TSA significantly reduced the H3K9me3 levels and increased the H3K9ac levels in SCNT embryos, although chaetocin alone significantly reduced only the H3K9me3 levels. Moreover, these inhibitors also decreased global DNA methylation in SCNT embryos. In addition, the expression of zygotic genome activation- and imprinting-related genes was increased by chaetocin or TSA, and more so by the combination, to levels similar to those of in vitro-fertilized embryos. These results suggest that combined chaetocin/TSA have synergistic effects on improving the developmental competences by regulating epigenetic reprogramming and correcting developmental potential-related gene expression in porcine SCNT embryos. Therefore, these strategies may contribute to the generation of transgenic pigs for biomedical research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA