Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 114, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811984

RESUMO

BACKGROUND: Prostate cancer develops through malignant transformation of the prostate epithelium in a stepwise, mutation-driven process. Although activator protein-1 transcription factors such as JUN have been implicated as potential oncogenic drivers, the molecular programs contributing to prostate cancer progression are not fully understood. METHODS: We analyzed JUN expression in clinical prostate cancer samples across different stages and investigated its functional role in a Pten-deficient mouse model. We performed histopathological examinations, transcriptomic analyses and explored the senescence-associated secretory phenotype in the tumor microenvironment. RESULTS: Elevated JUN levels characterized early-stage prostate cancer and predicted improved survival in human and murine samples. Immune-phenotyping of Pten-deficient prostates revealed high accumulation of tumor-infiltrating leukocytes, particularly innate immune cells, neutrophils and macrophages as well as high levels of STAT3 activation and IL-1ß production. Jun depletion in a Pten-deficient background prevented immune cell attraction which was accompanied by significant reduction of active STAT3 and IL-1ß and accelerated prostate tumor growth. Comparative transcriptome profiling of prostate epithelial cells revealed a senescence-associated gene signature, upregulation of pro-inflammatory processes involved in immune cell attraction and of chemokines such as IL-1ß, TNF-α, CCL3 and CCL8 in Pten-deficient prostates. Strikingly, JUN depletion reversed both the senescence-associated secretory phenotype and senescence-associated immune cell infiltration but had no impact on cell cycle arrest. As a result, JUN depletion in Pten-deficient prostates interfered with the senescence-associated immune clearance and accelerated tumor growth. CONCLUSIONS: Our results suggest that JUN acts as tumor-suppressor and decelerates the progression of prostate cancer by transcriptional regulation of senescence- and inflammation-associated genes. This study opens avenues for novel treatment strategies that could impede disease progression and improve patient outcomes.


Assuntos
Progressão da Doença , PTEN Fosfo-Hidrolase , Neoplasias da Próstata , Microambiente Tumoral , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Animais , Camundongos , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Microambiente Tumoral/imunologia , Fenótipo Secretor Associado à Senescência , Proteínas Proto-Oncogênicas c-jun/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Senescência Celular/genética , Modelos Animais de Doenças
2.
PLoS Genet ; 17(8): e1009716, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34339417

RESUMO

We investigated a hereditary cerebellar ataxia in Belgian Shepherd dogs. Affected dogs developed uncoordinated movements and intention tremor at two weeks of age. The severity of clinical signs was highly variable. Histopathology demonstrated atrophy of the CNS, particularly in the cerebellum. Combined linkage and homozygosity mapping in a family with four affected puppies delineated a 52 Mb critical interval. The comparison of whole genome sequence data of one affected dog to 735 control genomes revealed a private homozygous structural variant in the critical interval, Chr4:66,946,539_66,963,863del17,325. This deletion includes the entire protein coding sequence of SELENOP and is predicted to result in complete absence of the encoded selenoprotein P required for selenium transport into the CNS. Genotypes at the deletion showed the expected co-segregation with the phenotype in the investigated family. Total selenium levels in the blood of homozygous mutant puppies of the investigated litter were reduced to about 30% of the value of a homozygous wildtype littermate. Genotyping >600 Belgian Shepherd dogs revealed an additional homozygous mutant dog. This dog also suffered from pronounced ataxia, but reached an age of 10 years. Selenop-/- knock-out mice were reported to develop ataxia, but their histopathological changes were less severe than in the investigated dogs. Our results demonstrate that deletion of the SELENOP gene in dogs cause a defect in selenium transport associated with CNS atrophy and cerebellar ataxia (CACA). The affected dogs represent a valuable spontaneous animal model to gain further insights into the pathophysiological consequences of CNS selenium deficiency.


Assuntos
Ataxia Cerebelar/genética , Selenoproteína P/genética , Selenoproteína P/metabolismo , Animais , Atrofia/fisiopatologia , Sistema Nervoso Central/fisiologia , Ataxia Cerebelar/metabolismo , Doenças do Cão/genética , Cães , Feminino , Ligação Genética/genética , Genoma/genética , Genótipo , Homozigoto , Masculino , Fenótipo , Sequenciamento Completo do Genoma/métodos
3.
Int J Mol Sci ; 25(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38203458

RESUMO

Her-2/neu-targeting therapy by passive application with trastuzumab is associated with acquired resistance and subsequent metastasis development, which is attributed to the upregulation of tumoral PD-L1 expression and the downregulation of Her-2/neu. We aimed to investigate this association, following active immunization with our recently constructed B-cell peptide-based Her-2/neu vaccines in both preclinical and clinical settings. Immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and combined positive score (CPS) were applied to evaluate Her-2/neu and PD-L1 expression using a murine syngeneic tumor model for Her-2/neu lung metastases and tumor biopsies from a gastric cancer patient with disease progression. A significant and concomitant reduction in Her-2/neu and the upregulation of PD-L1 expression was observed in vaccinated mice after 45 days, but not after 30 days, of metastases development. A significant increase in tumor-infiltrating B lymphocytes was observed at both time points. The downregulation of Her-2/neu and the upregulation of PD-L1 were observed in a patient's primary tumor at the disease progression time point but not prior to vaccination (Her-2/neu IHC: 3 to 0, FISH: 4.98 to 1.63; PD-L1 CPS: 0% to 5%). Our results further underline the need for combination therapy by targeting PD-L1 to prevent metastasis formation and immune evasion of Her-2/neu-positive and PD-L1-negative tumor cells.


Assuntos
Antígeno B7-H1 , Vacinas Anticâncer , Humanos , Animais , Camundongos , Evasão da Resposta Imune , Hibridização in Situ Fluorescente , Oncogenes , Vacinas Anticâncer/uso terapêutico , Progressão da Doença
4.
Mol Cancer ; 21(1): 89, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354467

RESUMO

BACKGROUND: Frequent truncation mutations of the histone lysine N-methyltransferase KMT2C have been detected by whole exome sequencing studies in various cancers, including malignancies of the prostate. However, the biological consequences of these alterations in prostate cancer have not yet been elucidated. METHODS: To investigate the functional effects of these mutations, we deleted the C-terminal catalytic core motif of Kmt2c specifically in mouse prostate epithelium. We analysed the effect of Kmt2c SET domain deletion in a Pten-deficient PCa mouse model in vivo and of truncation mutations of KMT2C in a large number of prostate cancer patients. RESULTS: We show here for the first time that impaired KMT2C methyltransferase activity drives proliferation and PIN formation and, when combined with loss of the tumour suppressor PTEN, triggers loss of senescence, metastatic dissemination and dramatically reduces life expectancy. In Kmt2c-mutated tumours we show enrichment of proliferative MYC gene signatures and loss of expression of the cell cycle repressor p16INK4A. In addition, we observe a striking reduction in disease-free survival of patients with KMT2C-mutated prostate cancer. CONCLUSIONS: We identified truncating events of KMT2C as drivers of proliferation and PIN formation. Loss of PTEN and KMT2C in prostate cancer results in loss of senescence, metastatic dissemination and reduced life expectancy. Our data demonstrate the prognostic significance of KMT2C mutation status in prostate cancer patients. Inhibition of the MYC signalling axis may be a viable treatment option for patients with KMT2C truncations and therefore poor prognosis.


Assuntos
Metiltransferases , Neoplasias da Próstata , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas de Ligação a DNA/fisiologia , Humanos , Masculino , Metiltransferases/genética , Camundongos , Mutação , Neoplasias da Próstata/metabolismo , Sequenciamento do Exoma
5.
Mol Syst Biol ; 16(4): e9247, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32323921

RESUMO

Prostate cancer (PCa) has a broad spectrum of clinical behavior; hence, biomarkers are urgently needed for risk stratification. Here, we aim to find potential biomarkers for risk stratification, by utilizing a gene co-expression network of transcriptomics data in addition to laser-microdissected proteomics from human and murine prostate FFPE samples. We show up-regulation of oxidative phosphorylation (OXPHOS) in PCa on the transcriptomic level and up-regulation of the TCA cycle/OXPHOS on the proteomic level, which is inversely correlated to STAT3 expression. We hereby identify gene expression of pyruvate dehydrogenase kinase 4 (PDK4), a key regulator of the TCA cycle, as a promising independent prognostic marker in PCa. PDK4 predicts disease recurrence independent of diagnostic risk factors such as grading, staging, and PSA level. Therefore, low PDK4 is a promising marker for PCa with dismal prognosis.


Assuntos
Perfilação da Expressão Gênica/métodos , Recidiva Local de Neoplasia/genética , Neoplasias Experimentais/patologia , Neoplasias da Próstata/genética , Proteômica/métodos , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Fator de Transcrição STAT3/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Microdissecção e Captura a Laser , Masculino , Camundongos , Gradação de Tumores , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Fosforilação Oxidativa , Prognóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Fator de Transcrição STAT3/metabolismo , Biologia de Sistemas , Adulto Jovem
6.
Haematologica ; 106(6): 1693-1704, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327503

RESUMO

Patients diagnosed with Anaplastic Large Cell Lymphoma (ALCL) are still treated with toxic multi-agent chemotherapy and as many as 25-50% of patients relapse. To understand disease pathology and to uncover novel targets for therapy, Whole-Exome Sequencing (WES) of Anaplastic Lymphoma Kinase (ALK)+ ALCL was performed as well as Gene-Set Enrichment Analysis. This revealed that the T-cell receptor (TCR) and Notch pathways were the most enriched in mutations. In particular, variant T349P of NOTCH1, which confers a growth advantage to cells in which it is expressed, was detected in 12% of ALK+ and ALK- ALCL patient samples. Furthermore, we demonstrate that NPM-ALK promotes NOTCH1 expression through binding of STAT3 upstream of NOTCH1. Moreover, inhibition of NOTCH1 with γ-secretase inhibitors (GSIs) or silencing by shRNA leads to apoptosis; co-treatment in vitro with the ALK inhibitor Crizotinib led to additive/synergistic anti-tumour activity suggesting this may be an appropriate combination therapy for future use in the circumvention of ALK inhibitor resistance. Indeed, Crizotinib-resistant and sensitive ALCL were equally sensitive to GSIs. In conclusion, we show a variant in the extracellular domain of NOTCH1 that provides a growth advantage to cells and confirm the suitability of the Notch pathway as a second-line druggable target in ALK+ ALCL.


Assuntos
Linfoma Anaplásico de Células Grandes , Linhagem Celular Tumoral , Humanos , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/genética , Mutação , Recidiva Local de Neoplasia , Proteínas Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/genética , Receptor Notch1/genética , Sequenciamento do Exoma
7.
PLoS Genet ; 14(3): e1007264, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29565995

RESUMO

Lethal acrodermatitis (LAD) is a genodermatosis with monogenic autosomal recessive inheritance in Bull Terriers and Miniature Bull Terriers. The LAD phenotype is characterized by poor growth, immune deficiency, and skin lesions, especially at the paws. Utilizing a combination of genome wide association study and haplotype analysis, we mapped the LAD locus to a critical interval of ~1.11 Mb on chromosome 14. Whole genome sequencing of an LAD affected dog revealed a splice region variant in the MKLN1 gene that was not present in 191 control genomes (chr14:5,731,405T>G or MKLN1:c.400+3A>C). This variant showed perfect association in a larger combined Bull Terrier/Miniature Bull Terrier cohort of 46 cases and 294 controls. The variant was absent from 462 genetically diverse control dogs of 62 other dog breeds. RT-PCR analysis of skin RNA from an affected and a control dog demonstrated skipping of exon 4 in the MKLN1 transcripts of the LAD affected dog, which leads to a shift in the MKLN1 reading frame. MKLN1 encodes the widely expressed intracellular protein muskelin 1, for which diverse functions in cell adhesion, morphology, spreading, and intracellular transport processes are discussed. While the pathogenesis of LAD remains unclear, our data facilitate genetic testing of Bull Terriers and Miniature Bull Terriers to prevent the unintentional production of LAD affected dogs. This study may provide a starting point to further clarify the elusive physiological role of muskelin 1 in vivo.


Assuntos
Acrodermatite/veterinária , Moléculas de Adesão Celular/genética , Doenças do Cão/genética , Genes Letais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Splicing de RNA , Acrodermatite/genética , Animais , Mapeamento Cromossômico , Cães , Éxons , Estudo de Associação Genômica Ampla , Haplótipos , Reação em Cadeia da Polimerase em Tempo Real
9.
BMC Vet Res ; 15(1): 183, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164122

RESUMO

BACKGROUND: Intracranial abscess formation is an extremely rare and sporadically documented disease in South American Camelids (SACs). Herein we report the first case of otogenic brain abscess formation in this species. CASE PRESENTATION: A 4 years old female alpaca was presented to our veterinary hospital with a 6 month history of neurologic disorder symptoms, mainly head tilt to the right and emaciation. A comprehensive workup (ultrasound and computed tomography) revealed irreversible cranial nerve abnormalities, extensive lesions in the region of external, middle and internal right ear including destruction of bony structures (tympanic bulla, parts of temporal bone) and severe brain deformation caused by an intracranial abscess. The lesion was up to 6x7x4 cm and occupying almost 40% of the cranial cavity. No pathological findings were evident in other organs or structures. The late referral of the alpaca at this advanced stage of destructive disease precluded surgical intervention. CONCLUSIONS: This case report describes the clinical signs, diagnostic procedures and pathological findings in an adult female alpaca suffering from cranial nerve abnormalities caused by a massive otogenic brain abscess. Camelids suffering from otitis may not present with clinical signs until the pathology is severe. The importance of considering intracranial abscess formation as differential diagnosis in SACs showing the merest hint of nerve deficits cannot be emphasized enough in order to diagnose such pathological processes at an early and treatable stage.


Assuntos
Abscesso Encefálico/veterinária , Camelídeos Americanos , Animais , Abscesso Encefálico/diagnóstico por imagem , Abscesso Encefálico/patologia , Feminino , Tomografia Computadorizada por Raios X
10.
PLoS Pathog ; 12(12): e1006032, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27973535

RESUMO

Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen.


Assuntos
Apoptose/imunologia , Doença dos Legionários/imunologia , Células Mieloides/imunologia , Infecções Estreptocócicas/imunologia , Animais , Citometria de Fluxo , Imunidade Inata , Legionella pneumophila/imunologia , Camundongos , Camundongos Transgênicos , Streptococcus pyogenes/imunologia
11.
Acta Vet Hung ; 66(2): 269-280, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29958521

RESUMO

Hippocampal necrosis and hippocampal sclerosis in cats is a neuropathological entity which is a major concern in feline epilepsy. The aim of our study was to identify associated pathologic brain lesions possibly serving as aetiological triggers in this condition. Therefore, the formalin-fixed and paraffin waxembedded brain tissue of 35 cats diagnosed with hippocampal necrosis or sclerosis was examined retrospectively. In 26 cats inflammatory infiltrates could be found in the hippocampus or adjacent brain regions. Fifteen out of these animals demonstrated mild to moderate infiltrations by lymphocytes and complement deposition in the hippocampus similar to human limbic encephalitis, seven showed unspecific, predominantly non-suppurative inflammation, and two demonstrated suppurative inflammation of the hippocampus or adjacent brain regions. Additionally, one cat was diagnosed with central nervous manifestation of feline infectious peritonitis virus and another one with cerebral Toxoplasma gondii infection. Intracranial neoplasia was present in five cases altogether. Three of them comprised meningioma which was present additionally to lesions resembling limbic encephalitis in two cases, and a dentate gyrus alteration in one case. The other two tumour-associated cases comprised oligodendroglioma. Structural alterations of the dentate gyrus together with hippocampal sclerosis were encountered in three cases in total. Besides the case associated with a meningioma, one case demonstrated lesions resembling limbic encephalitis. A vascular infarct in the temporal lobe was encountered in one cat. In four cases no lesions other than hippocampal necrosis or sclerosis were found. The involvement of feline immunodeficiency virus infections, which may be able to produce hippocampal lesions, was not encountered in the cats examined.


Assuntos
Encefalopatias/veterinária , Doenças do Gato/parasitologia , Hipocampo/patologia , Necrose/veterinária , Esclerose/veterinária , Animais , Encefalopatias/patologia , Gatos , Feminino , Masculino , Necrose/patologia , Estudos Retrospectivos , Esclerose/patologia
12.
Emerg Infect Dis ; 23(7): 1176-1179, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28628456

RESUMO

A novel pestivirus species was discovered in a piglet-producing farm in Austria during virologic examinations of congenital tremor cases. The emergence of this novel pestivirus species, provisionally termed Linda virus, in domestic pigs may have implications for classical swine fever virus surveillance and porcine health management.


Assuntos
Infecções por Pestivirus/veterinária , Pestivirus/classificação , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Animais , Áustria/epidemiologia , Surtos de Doenças , História do Século XXI , Imuno-Histoquímica , Pestivirus/genética , Pestivirus/metabolismo , Fenótipo , Filogenia , RNA Viral , Sus scrofa , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/história
13.
Vet Res ; 48(1): 1, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28057061

RESUMO

In 2013, several Austrian piglet-producing farms recorded outbreaks of action-related repetitive myoclonia in newborn piglets ("shaking piglets"). Malnutrition was seen in numerous piglets as a complication of this tremor syndrome. Overall piglet mortality was increased and the number of weaned piglets per sow decreased by more than 10% due to this outbreak. Histological examination of the CNS of affected piglets revealed moderate hypomyelination of the white substance in cerebellum and spinal cord. We detected a recently discovered pestivirus, termed atypical porcine pestivirus (APPV) in all these cases by RT-PCR. A genomic sequence and seven partial sequences were determined and revealed a 90% identity to the US APPV sequences and 92% identity to German sequences. In confirmation with previous reports, APPV genomes were identified in different body fluids and tissues including the CNS of diseased piglets. APPV could be isolated from a "shaking piglet", which was incapable of consuming colostrum, and passaged on different porcine cells at very low titers. To assess the antibody response a blocking ELISA was developed targeting NS3. APPV specific antibodies were identified in sows and in PCR positive piglets affected by congenital tremor (CT). APPV genomes were detected continuously in piglets that gradually recovered from CT, while the antibody titers decreased over a 12-week interval, pointing towards maternally transmitted antibodies. High viral loads were detectable by qRT-PCR in saliva and semen of infected young adults indicating a persistent infection.


Assuntos
Infecções por Pestivirus/veterinária , Pestivirus , Doenças dos Suínos/virologia , Animais , Animais Recém-Nascidos/virologia , Anticorpos Antivirais/imunologia , Áustria/epidemiologia , Surtos de Doenças/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Masculino , Pestivirus/genética , Infecções por Pestivirus/congênito , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Análise de Sequência de DNA/veterinária , Suínos , Doenças dos Suínos/congênito , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/patologia , Carga Viral/veterinária
14.
J Med Chem ; 67(5): 4036-4062, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38442487

RESUMO

A substantial portion of patients do not benefit from programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) checkpoint inhibition therapies, necessitating a deeper understanding of predictive biomarkers. Immunohistochemistry (IHC) has played a pivotal role in assessing PD-L1 expression, but small-molecule positron emission tomography (PET) tracers could offer a promising avenue to address IHC-associated limitations, i.e., invasiveness and PD-L1 expression heterogeneity. PET tracers would allow for improved quantification of PD-L1 through noninvasive whole-body imaging, thereby enhancing patient stratification. Here, a large series of PD-L1 targeting small molecules were synthesized, leveraging advantageous substructures to achieve exceptionally low nanomolar affinities. Compound 5c emerged as a promising candidate (IC50 = 10.2 nM) and underwent successful carbon-11 radiolabeling. However, a lack of in vivo tracer uptake in xenografts and notable accumulation in excretory organs was observed, underscoring the challenges encountered in small-molecule PD-L1 PET tracer development. The findings, including structure-activity relationships and in vivo biodistribution data, stand to illuminate the path forward for refining small-molecule PD-L1 PET tracers.


Assuntos
Antígeno B7-H1 , Tomografia por Emissão de Pósitrons , Humanos , Antígeno B7-H1/metabolismo , Ligantes , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Imuno-Histoquímica
15.
Vaccines (Basel) ; 12(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38543863

RESUMO

BACKGROUND: COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a recurrent endemic disease affecting the whole world. Since November 2021, Omicron and its subvariants have dominated in the spread of the disease. In order to prevent severe courses of disease, vaccines are needed to boost and maintain antibody levels capable of neutralizing Omicron. Recently, we produced and characterized a SARS-CoV-2 vaccine based on a recombinant fusion protein consisting of hepatitis B virus (HBV)-derived PreS and two SARS-CoV-2 wild-type RBDs. OBJECTIVES: To develop a PreS-RBD vaccine which induces high levels of Omicron-specific neutralizing antibodies. METHODS: We designed, produced, characterized and compared strain-specific (wild-type: W-PreS-W; Omicron: O-PreS-O), bivalent (mix of W-PreS-W and O-PreS-O) and chimeric (i.e., W-PreS-O) SARS-CoV-2 protein subunit vaccines. Immunogens were characterized in vitro using protein chemical methods, mass spectrometry, and circular dichroism in combination with thermal denaturation and immunological methods. In addition, BALB/c mice were immunized with aluminum-hydroxide-adsorbed proteins and aluminum hydroxide alone (i.e., placebo) to study the specific antibody and cytokine responses, safety and Omicron neutralization. RESULTS: Defined and pure immunogens could be produced in significant quantities as secreted and folded proteins in mammalian cells. The antibodies induced after vaccination with different doses of strain-specific, bivalent and chimeric PreS-RBD fusion proteins reacted with wild-type and Omicron RBD in a dose-dependent manner and resulted in a mixed Th1/Th2 immune response. Interestingly, the RBD-specific IgG levels induced with the different vaccines were comparable, but the W-PreS-O-induced virus neutralization titers against Omicron (median VNT50: 5000) were seven- and twofold higher than the W-PreS-W- and O-PreS-O-specific ones, respectively, and they were six-fold higher than those of the bivalent vaccine. CONCLUSION: Among the tested immunogens, the chimeric PreS-RBD subunit vaccine, W-PreS-O, induced the highest neutralizing antibody titers against Omicron. Thus, W-PreS-O seems to be a highly promising COVID-19 vaccine candidate for further preclinical and clinical evaluation.

16.
Front Vet Sci ; 10: 1276588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026669

RESUMO

Introduction: Extracorporeal cardiopulmonary resuscitation (ECPR) is an emerging strategy in highly selected patients with refractory cardiac arrest (CA). Animal models can help to identify new therapeutic strategies to improve neurological outcome and cardiac function after global ischemia in CA. Aim of the study was to establish a reproducible ECPR rat model of ventricular fibrillation CA (VFCA) that leads to consistent neuronal damage with acceptable long-term survival rates, which can be used for future research. Materials and methods: Male Sprague Dawley rats were resuscitated with ECPR from 6 min (n = 15) and 8 min (n = 16) VFCA. Animals surviving for 14 days after return of spontaneous resuscitation (ROSC) were compared with sham operated animals (n = 10); neurological outcome was assessed daily until day 14. In the hippocampal cornu ammonis 1 region viable neurons were counted. Microglia and astrocyte reaction was assessed by Iba1 and GFAP immunohistochemistry, and collagen fibers in the myocardium were detected in Azan staining. QuPath was applied for quantification. Results: Of the 15 rats included in the 6 min CA group, all achieved ROSC (100%) and 10 (67%) survived to 14 days; in the 8 min CA group, 15 (94%) achieved ROSC and 5 (31%) reached the endpoint. All sham animals (n = 10) survived 2 weeks. The quantity of viable neurons was significantly decreased, while the area displaying Iba1 and GFAP positive pixels was significantly increased in the hippocampus across both groups that experienced CA. Interestingly, there was no difference between the two CA groups regarding these changes. The myocardium in the 8 min CA group exhibited significantly more collagen fibers compared to the sham animals, without differences between 6- and 8-min CA groups. However, this significant increase was not observed in the 6 min CA group. Conclusion: Our findings indicate a uniform occurrence of neuronal damage in the hippocampus across both CA groups. However, there was a decrease in survival following an 8-min CA. Consequently, a 6-min duration of CA resulted in predictable neurological damage without significant cardiac damage and ensured adequate survival rates up to 14 days. This appears to offer a reliable model for investigating neuroprotective therapies.

17.
Viruses ; 14(2)2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35215920

RESUMO

Linda virus (LindaV) was first identified in a pig farm in Styria, Austria in 2015 and associated with congenital tremor (CT) type A-II in newborn piglets. Since then, only one more LindaV affected farm was retrospectively discovered 10 km away from the initially affected farm. Here, we report the recent outbreak of a novel LindaV strain in a farrow-to-finish farm in the federal state Carinthia, Austria. No connection between this farm and the previously affected farms could be discovered. The outbreak was characterized by severe CT cases in several litters and high preweaning mortality. A herd visit two months after the onset of clinical symptoms followed by a diagnostic workup revealed the presence of several viremic six-week-old nursery pigs. These animals shed large amounts of virus via feces and saliva, implying an important epidemiological role for within- and between-herd virus transmission. The novel LindaV strain was isolated and genetically characterized. The findings underline a low prevalence of LindaV in the Austrian pig population and highlight the threat when introduced into a pig herd. Furthermore, the results urge the need to better understand the routes of persistence and transmission of this enigmatic pestivirus in the pig population.


Assuntos
Doenças Transmissíveis Emergentes/veterinária , Infecções por Pestivirus/veterinária , Pestivirus/isolamento & purificação , Doenças dos Suínos/virologia , Animais , Áustria/epidemiologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Surtos de Doenças , Fazendas , Fezes/virologia , Pestivirus/classificação , Pestivirus/genética , Pestivirus/fisiologia , Infecções por Pestivirus/epidemiologia , Infecções por Pestivirus/virologia , Filogenia , Estudos Retrospectivos , Suínos , Doenças dos Suínos/epidemiologia
18.
Transl Oncol ; 19: 101378, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35259675

RESUMO

In pre-clinical and clinical settings, active immunization with a Her-2/neu vaccine (HerVaxx), comprising B-cell peptide from Trastuzumab binding site, has been shown to reduce primary tumor growth via induction of polyclonal anti-tumor immune responses and immunological memory. Here, we tested the combination of HerVaxx and the recently identified B-cell epitope/mimotope of Pertuzumab, i.e. a multi-peptide B-cell vaccine, for preventing Her-2/neu lung metastases formation in a mouse model. Active immunization with the multi-peptide vaccine was associated with decreased lung weights, and histological evaluation of the lungs showed that the significant reduction of lung metastases was associated with increased CD4+ and CD8+ T cell infiltration. Notably, along with the overall reduction of lungs weights and Her-2 positive metastases, a formation of Her-2/neu-negative tumors but with increased PD-L1 expression was observed. Our results might pave the way to a multi-peptide B-cell Her-2/neu vaccine serving as a secondary intervention in adjuvant settings to prevent tumor recurrence and spread. Moreover, combination therapy targeting PD-L1 may result in total remission of metastases. Such a therapy may be used clinically to alternately target Her-2/neu and PD-L1 in metastatic breast cancer.

19.
Nat Commun ; 13(1): 7304, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435874

RESUMO

Melanoma brain metastases (MBM) variably respond to therapeutic interventions; thus determining patient's prognosis. However, the mechanisms that govern therapy response are poorly understood. Here, we use a multi-OMICS approach and targeted sequencing (TargetSeq) to unravel the programs that potentially control the development of progressive intracranial disease. Molecularly, the expression of E-cadherin (Ecad) or NGFR, the BRAF mutation state and level of immune cell infiltration subdivides tumors into proliferative/pigmented and invasive/stem-like/therapy-resistant irrespective of the intracranial location. The analysis of MAPK inhibitor-naive and refractory MBM reveals switching from Ecad-associated into NGFR-associated programs during progression. NGFR-associated programs control cell migration and proliferation via downstream transcription factors such as SOX4. Moreover, global methylome profiling uncovers 46 differentially methylated regions that discriminate BRAFmut and wildtype MBM. In summary, we propose that the expression of Ecad and NGFR sub- classifies MBM and suggest that the Ecad-to-NGFR phenotype switch is a rate-limiting process which potentially indicates drug-response and intracranial progression states in melanoma patients.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Melanoma/patologia , Neoplasias Encefálicas/patologia , Mutação , Fatores de Transcrição SOXC/genética
20.
Front Immunol ; 12: 750466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003062

RESUMO

T helper (Th) 17 cells are not only key in controlling infections mediated by extracellular bacteria and fungi but are also triggering autoimmune responses. Th17 cells comprise heterogeneous subsets, some with pathogenic functions. They can cease to secrete their hallmark cytokine IL-17A and even convert to other T helper lineages, a process known as transdifferentiation relying on plasticity. Both pathogenicity and plasticity are tightly linked to IL-23 signaling. Here, we show that the protein tyrosine kinase Tec is highly induced in Th17 cells. Th17 differentiation was enhanced at low interleukin-6 (IL-6) concentrations in absence of Tec, which correlates with increased STAT3 phosphorylation and higher Il23r expression. Therefore, we uncovered a function for Tec in the IL-6 sensing via STAT3 by CD4+ T cells, defining Tec as a fine-tuning negative regulator of Th17 differentiation. Subsequently, by using the IL-17A fate mapping mouse combined with in vivo adoptive transfer models, we demonstrated that Tec not only restrained effector Th17 differentiation but also pathogenicity and plasticity in a T-cell intrinsic manner. Our data further suggest that Tec regulates inflammatory Th17-driven immune responses directly impacting disease severity in a T-cell-driven colitis model. Notably, consistent with the in vitro findings, elevated levels of the IL-23 receptor (IL-23R) were observed on intestinal pre- and postconversion Th17 cells isolated from diseased Tec-/- mice subjected to adoptive transfer colitis, highlighting a fundamental role of Tec in restraining IL-23R expression, likely via the IL-6-STAT3 signaling axis. Taken together, these findings identify Tec as a negative regulator of Th17 differentiation, pathogenicity, and plasticity, contributing to the mechanisms which help T cells to orchestrate optimal immune protection and to restrain immunopathology.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Inflamação/imunologia , Intestinos/imunologia , Proteínas Tirosina Quinases/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular/imunologia , Inflamação/patologia , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Tirosina Quinases/metabolismo , Células Th17/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA