Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chemistry ; 30(1): e202303230, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947164

RESUMO

Solar energy utilization has gained considerable attention due to its abundance and renewability. However, its intermittent nature presents a challenge in harnessing its full potential. The development of energy storing compounds capable of capturing and releasing solar energy on demand has emerged as a potential solution. These compounds undergo a photochemical transformation that results in a high-energy metastable photoisomer, which stores solar energy in the form of chemical bonds and can release it as heat when required. Such systems are referred to as MOlecular Solar Thermal (MOST)-systems. Although the photoisomerization of MOST systems has been vastly studied, its back-conversion, particularly using heterogeneous catalysts, is still underexplored and the development of effective catalysts for releasing stored energy is crucial. Herein we compare the performance of 27 heterogeneous catalysts releasing the stored energy in an efficient Norbornadiene/Quadricyclane (NBD/QC) MOST system. We report the first benchmarking of heterogeneous catalysts for a MOST system using a robust comparison method of the catalysts' activity and monitoring the conversion using UV-Visible (UV-Vis) spectroscopy. Our findings provide insights into the development of effective catalysts for MOST systems. We anticipate that our assay will reveal the necessity of further investigation on heterogeneous catalysis.

2.
Chemistry ; 30(34): e202400322, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629212

RESUMO

This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.


Assuntos
Peptídeos beta-Amiloides , Corantes Fluorescentes , Pirenos , Corantes Fluorescentes/química , Pirenos/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Humanos , Simulação de Acoplamento Molecular , Norbornanos/química , Placa Amiloide/química , Placa Amiloide/diagnóstico por imagem , Teoria da Densidade Funcional , Isomerismo , Espectrometria de Fluorescência
3.
Faraday Discuss ; 245(0): 284-297, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37305958

RESUMO

The norbornadiene (NBD) molecule, C7H8, owes its fame to its remarkable photoswitching properties that are promising for molecular solar-thermal energy storage systems. Besides this photochemical interest, NBD is a rather unreactive species within astrophysical conditions and it should exhibit high photostability, properties that might also position this molecule as an important constituent of the interstellar medium (ISM)-especially in environments that are well shielded from short-wavelength radiation, such as dense molecular clouds. It is thus conceivable that, once formed, NBD can survive in dense molecular clouds and act as a carbon sink. Following the recent interstellar detections of large hydrocarbons, including several cyano-containing ones, in the dense molecular cloud TMC-1, it is thus logical to consider searching for NBD-which presents a shallow but non-zero permanent electric dipole moment (0.06 D)-as well as for its mono- and dicyano-substituted compounds, referred to as CN-NBD and DCN-NBD, respectively. The pure rotational spectra of NBD, CN-NBD, and DCN-NBD have been measured at 300 K in the 75-110 GHz range using a chirped-pulse Fourier-transform millimetre-wave spectrometer. Of the three species, only NBD was previously studied at high resolution in the microwave domain. From the present measurements, the derived spectroscopic constants enable prediction of the spectra of all three species at various rotational temperatures (up to 300 K) in the spectral range mapped at high resolution by current radio observatories. Unsuccessful searches for these molecules were conducted toward TMC-1 using the QUIJOTE survey, carried out at the Yebes telescope, allowing derivation of the upper limits to the column densities of 1.6 × 1014 cm-2, 4.9 × 1010 cm-2, and 2.9 × 1010 cm-2 for NBD, CN-NBD, and DCN-NBD, respectively. Using CN-NBD and cyano-indene as proxies for the corresponding bare hydrocarbons, this indicates that-if present in TMC-1-NBD would be at least four times less abundant than indene.

4.
Chem Soc Rev ; 51(17): 7313-7326, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35726574

RESUMO

Molecular solar thermal energy storage systems (MOST) offer emission-free energy storage where solar power is stored via valence isomerization in molecular photoswitches. These photoswitchable molecules can later release the stored energy as heat on-demand. Such systems are emerging in recent years as a vibrant research field that is rapidly transitioning from basic research to applications. Since a major part of the attention is focused on molecular design and engineering, MOST-based device development has not been systematically summarized and introduced to a broad audience. This tutorial review will discuss the most commonly used and developed devices from a chemical engineering point of view. It is expected that future developers of MOST technology could be inspired by the existing devices, keeping in mind the summarized essential practical challenges towards large-scale implementations and more innovative applications.

5.
Angew Chem Int Ed Engl ; 62(40): e202309543, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489860

RESUMO

Photoswitches are molecular systems that are chemically transformed subsequent to interaction with light and they find potential application in many new technologies. The design and discovery of photoswitch candidates require intricate molecular engineering of a range of properties to optimize a candidate to a specific applications, a task which can be tackled efficiently using quantum chemical screening procedures. In this paper, we perform a large scale screening of approximately half a million bicyclic diene photoswitches in the context of molecular solar thermal energy storage using ab initio quantum chemical methods. We further device an efficient strategy for scoring the systems based on their predicted solar energy conversion efficiency and elucidate potential pitfalls of this approach. Our search through the chemical space of bicyclic dienes reveals systems with unprecedented solar energy conversion efficiencies and storage densities that show promising design guidelines for next generation molecular solar thermal energy storage systems.

6.
J Am Chem Soc ; 144(20): 8977-8986, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35543627

RESUMO

Inspired by light-induced processes in nature to mimic the primary events in the photosynthetic reaction centers, novel functional materials combine electron donors and acceptors, i.e., (metallo)porphyrins (ZnP) and fullerenes (C60), respectively, with emerging materials, i.e., nanographenes. We utilized hexa-peri-hexabenzocoronene (HBC) due to its versatility regarding functionalization and physicochemical properties, to construct three regioisomeric ZnP-HBC-C60 conjugates, which foster geometrical diversity by arranging ZnP and C60 in ortho-, meta-, and para-positions to each other. The corresponding hexaarylbenzene (HAB) motifs, with an interrupted π-system, were also prepared. Transient absorption measurements disclosed the fast population of charge transfer as well as singlet and triplet charge-separated states. With the help of density functional theory (DFT) calculations, we further conceive the communication across the HBCs and HABs. This work reveals the impact of both the geometrical arrangement with respect to through-space versus through-bond interactions and the structural rigidity/flexibility on the charge management across the different π-systems.


Assuntos
Fulerenos , Complexo de Proteínas do Centro de Reação Fotossintética , Porfirinas , Elétrons , Fulerenos/química , Complexo de Proteínas do Centro de Reação Fotossintética/química , Porfirinas/química
7.
Phys Chem Chem Phys ; 24(47): 28956-28964, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36416497

RESUMO

We present a procedure for performing high throughput screening of molecular compounds for molecular solar thermal energy storage devices using extended tight binding (xTB) methods. In order to validate our approach, we performed screening of 3230 norbornadiene/quadricyclane (NBD/QC) derivatives in terms of storage energies, activation barriers and absorption of solar radiation using our approach, and compared it to high level density functional theory (DFT) and cluster perturbation (CP) theory calculations. Our comparisons show that the xTB screening framework correlates very well with DFT and CP theory in that it predicts the same relative trends in the studied parameters although the storage energies and thermal reaction barriers are significantly offset. Utilizing the screening methodology, we have been able to locate compounds that would either be excellent candidates or compounds that should not be considered further for molecular solar thermal energy storage devices. This methodology can readily be extended and applied to screening other molecular motifs for molecular solar energy storage.

8.
J Phys Chem A ; 126(39): 6849-6857, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36149432

RESUMO

The photoconversion of a norbornadiene (NBD) derivative was studied under high-intensity mono- and polychromatic light conditions at high concentrations. The photoisomerization quantum yield (ϕNBD→QC), proceeding from NBD to its quadricyclane (QC) isomer, was determined using a tunable OPO laser and a solar simulator light source. The solar simulator was designed to mimic the AM1.5G solar spectrum between 300 and 900 nm. Using the OPO laser, ϕNBD→QC was measured at discrete values between 310 and 350 nm in steps of 10 nm, and a variation between 0.81 and 0.96 was observed. Weighting these values of ϕNBD→QC with the spectral profile of the solar simulator, an averaged value of 0.87 ± 0.03 was obtained. Determination of ϕNBD→QC was also performed directly in the solar simulator providing a value of 0.97 ± 0.14, in good agreement with the weighted values from the OPO. Photoisomerization quantum yields were found to decrease slightly at higher concentrations. At high concentrations, we found that correcting for the presence of QC was important due to similar absorption coefficients of the NBD and QC isomers at the absorption tail. Cyclability of the forward and backward NBD/QC conversion was studied over several cycles. The NBD/QC couple exhibited excellent thermal stability, but a slight photodegradation per cycle was observed, increasing with the concentration of the sample. This result indicates that the molecules undergo some intermolecular reactions.

9.
Chemphyschem ; 22(4): 396-403, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33285027

RESUMO

We study the interaction and metalation reaction of a free base 5,10,15,20-terakis(4-cyanophenyl)porphyrin (2HTCNPP) with post-deposited Zn atoms and the targeted reaction product Zn-5,10,15,20-terakis(4-cyanophenyl)porphyrin (ZnTCNPP) on a Ag(111) surface. The investigations are performed with scanning tunneling microscopy at room temperature after Zn deposition and subsequent heating. The goal is to obtain further insights in the metalation reaction and the influence of the cyanogroups on this reaction. The interaction of 2HTCNPP with post-deposited Zn leads to the formation of three different 2D ordered island types that coexist on the surface. All contain a new species with a bright appearance, which increases with the amount of post-deposited Zn. We attribute this to metastable SAT ("sitting atop") complexes formed by Zn and the macrocycle, that is, an intermediate in the metalation reaction to ZnTCNPP, which occurs upon heating to 500 K. Interestingly, the activation barrier for the successive reaction of the SAT complex to the metalated ZnTCNPP species can also be overcome by a voltage pulse applied to the STM tip.

10.
Chemistry ; 26(59): 13408-13418, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32573877

RESUMO

We investigated the adsorption of three related cyano-functionalized tetraphenyl porphyrin derivatives on Cu(111) by scanning tunneling microscopy (STM) in ultra-high vacuum (UHV) with the goal to identify the role of the cyano group and the central Cu atom for the intermolecular and supramolecular arrangement. The porphyrin derivatives studied were Cu-TCNPP, Cu-cisDCNPP, and 2H-cisDCNPP, that is, Cu-5,10,15,20-tetrakis-(p-cyano)-phenylporphyrin, Cu-meso-cis-di(p-cyano)-phenylporphyrin and 2H-meso-cis-di(p-cyano)-phenylporphyrin, respectively. Starting from different structures obtained after deposition at room temperature, all three molecules form the same long-range ordered hexagonal honeycomb-type structure with triangular pores and three molecules per unit cell. For the metal-free 2H-cisDCNPP, this occurs only after self-metalation upon heating. The structure-forming elements are pores with a distance of 3.1 nm, formed by triangles of porphyrins fused together by cyano-Cu-cyano interactions with Cu adatoms. This finding leads us to suggest that two cyano-phenyl groups in the "cis" position is the minimum prerequisite to form a highly ordered 2D porous molecular pattern. The experimental findings are supported by detailed density functional theory calculations to analyze the driving forces that lead to the formation of the porous hexagonal honeycomb-type structure.

11.
Phys Chem Chem Phys ; 20(38): 25062-25068, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30250951

RESUMO

We investigated the metalation and coordination reactions of Co with 2H-5,15-bis(para-cyanophenyl)-10,20-bisphenylporphyrin (2HtransDCNPP) on a Ag(111) surface by scanning tunneling microscopy. At room temperature (RT), 2HtransDCNPPs self-assemble into a supramolecular structure stabilized by intermolecular hydrogen bonding. The metalation of 2HtransDCNPP is achieved either by depositing Co atoms onto the supramolecular structure at RT, or, alternatively, by depositing the molecules onto a submonolayer Co-precovered Ag(111) surface with a subsequent heating to 500 K. In addition, the molecules coordinate to Co atoms through the N atoms in the peripheral cyano groups with a preference of isolated 4-fold coordination motifs at RT.

12.
Angew Chem Int Ed Engl ; 57(32): 10074-10079, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29714820

RESUMO

The reaction rate of the self-metalation of free-base tetraphenylporphyrins (TPPs) on Cu(111) increases with the number of cyano groups (n=0, 1, 2, 4) attached at the para positions of the phenyl rings. The findings are based on isothermal scanning tunneling microscopy (STM) measurements. At room temperature, all investigated free-base TPP derivatives adsorb as individual molecules and are aligned with respect to densely packed Cu substrate rows. Annealing at 400 K leads to the formation of linear dimers and/or multimers via CN-Cu-CN bonds, accompanied by self-metalation of the free-base porphyrins following a first-order rate equation. When comparing the non-cyano-functionalized and the tetracyano-functionalized molecules, we find a decrease of the reaction rate by a factor of more than 20, corresponding to an increase of the activation energy from 1.48 to 1.59 eV. Density functional theory (DFT) calculations give insights into the influence of the peripheral electron-withdrawing cyano groups and explain the experimentally observed effects.

13.
Angew Chem Int Ed Engl ; 55(18): 5602-5, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27010964

RESUMO

A novel rational synthetic pathway-the "functionalization of para-nitroaniline" (FpNA)-provides substituted hexaarylbenzenes (HABs) with uncommon symmetries that bear up to five different substituents, fully avoiding regioisomeric product distributions during the reactions. 4-Nitroaniline is functionalized by a cascade of electrophilic halogenations, Sandmeyer brominations, and Suzuki cross-coupling reactions, leading to 26 substitution geometries, of which 18 structures are not available by the current established techniques. Furthermore, we demonstrate that this method is applicable to the bulk production of such systems on a multigram scale. Regarding optoelectronic properties, we demonstrate how highly functionalized HABs can show strong luminescent behavior, making these molecules very attractive to organic electronic devices.

14.
ChemSusChem ; 17(2): e202301184, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37747153

RESUMO

Molecular solar thermal (MOST) energy storage systems are getting increased attention related to renewable energy storage applications. Particularly, 2,3-difunctionalized norbornadiene-quadricyclane (NBD-QC) switches bearing a nitrile (CN) group as one of the two substituents are investigated as promising MOST candidates thanks to their high energy storage densities and their red-shifted absorbance. Moreover, such NBD systems can be prepared in large quantities (a requirement for MOST-device applications) in flow through Diels-Alder reaction between cyclopentadiene and appropriately functionalized propynenitriles. However, these acetylene precursors are traditionally prepared in batch from their corresponding acetophenones using reactive chemicals potentially leading to health and physical hazards, especially when working on a several-grams scale. Here, we develop a multistep flow-chemistry route to enhance the production of these crucial precursors. Furthermore, we assess the atom economy (AE) and the E-factor showing improved green metrics compared to classical batch methods. Our results pave the way for a complete flow synthesis of NBDs with a positive impact on green chemistry aspects.

15.
ACS Appl Mater Interfaces ; 16(6): 7211-7218, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38301237

RESUMO

Molecular solar thermal energy storage (MOST) systems are rapidly becoming a feasible alternative to energy storage and net-zero carbon emission heating. MOST systems involve a single photoisomerization pair that incorporates light absorption, storage, and heat release processes in one recurring cycle. Despite significant recent advancements in the field, the catalytic back-reaction from MOST systems remains relatively unexplored. A wide range of applications is possible, contingent on the energy densities of the specific photoisomers. Here, we report platinum-, copper-, and nickel-based heterogeneous catalysts screened in batch conditions for the back-conversion reaction on the cyano-3-(4-methoxyphenyl)-norbornadiene/quadricyclane pair. Catalyst reactivities are investigated using structural characterization, imaging techniques, and spectroscopic analysis. Finally, the thermal stability is also explored for our best-performing catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA