Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Genes Dev ; 32(23-24): 1562-1575, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478249

RESUMO

Heat shock factor 1 (HSF-1) and forkhead box O (FOXO) are key transcription factors that protect cells from various stresses. In Caenorhabditis elegans, HSF-1 and FOXO together promote a long life span when insulin/IGF-1 signaling (IIS) is reduced. However, it remains poorly understood how HSF-1 and FOXO cooperate to confer IIS-mediated longevity. Here, we show that prefoldin 6 (PFD-6), a component of the molecular chaperone prefoldin-like complex, relays longevity response from HSF-1 to FOXO under reduced IIS. We found that PFD-6 was specifically required for reduced IIS-mediated longevity by acting in the intestine and hypodermis. We showed that HSF-1 increased the levels of PFD-6 proteins, which in turn directly bound FOXO and enhanced its transcriptional activity. Our work suggests that the prefoldin-like chaperone complex mediates longevity response from HSF-1 to FOXO to increase the life span in animals with reduced IIS.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Longevidade/genética , Chaperonas Moleculares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Intestinos/fisiologia , Chaperonas Moleculares/genética , Ligação Proteica , Transdução de Sinais/genética , Tela Subcutânea/fisiologia , Ativação Transcricional/genética
2.
Hum Mol Genet ; 30(12): 1084-1100, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33783499

RESUMO

RNA-binding proteins (RBPs) play essential roles in diverse cellular processes through post-transcriptional regulation of RNAs. The subcellular localization of RBPs is thus under tight control, the breakdown of which is associated with aberrant cytoplasmic accumulation of nuclear RBPs such as TDP-43 and FUS, well-known pathological markers for amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). Here, we report in Drosophila model for ALS/FTD that nuclear accumulation of a cytoplasmic RBP Staufen may be a new pathological feature. We found that in Drosophila C4da neurons expressing PR36, one of the arginine-rich dipeptide repeat proteins (DPRs), Staufen accumulated in the nucleus in Importin- and RNA-dependent manner. Notably, expressing Staufen with exogenous NLS-but not with mutated endogenous NLS-potentiated PR-induced dendritic defect, suggesting that nuclear-accumulated Staufen can enhance PR toxicity. PR36 expression increased Fibrillarin staining in the nucleolus, which was enhanced by heterozygous mutation of stau (stau+/-), a gene that codes Staufen. Furthermore, knockdown of fib, which codes Fibrillarin, exacerbated retinal degeneration mediated by PR toxicity, suggesting that increased amount of Fibrillarin by stau+/- is protective. stau+/- also reduced the amount of PR-induced nuclear-accumulated Staufen and mitigated retinal degeneration and rescued viability of flies expressing PR36. Taken together, our data show that nuclear accumulation of Staufen in neurons may be an important pathological feature contributing to the pathogenesis of ALS/FTD.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Demência Frontotemporal/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Arginina/genética , Proteína C9orf72/genética , Núcleo Celular/genética , Citoplasma/genética , Dipeptídeos/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Demência Frontotemporal/patologia , Técnicas de Silenciamento de Genes , Humanos , Neurônios/metabolismo , Neurônios/patologia , Sinais de Localização Nuclear/genética , Processamento Pós-Transcricional do RNA/genética
3.
PLoS Biol ; 17(8): e3000415, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31408455

RESUMO

Low temperatures delay aging and promote longevity in many organisms. However, the metabolic and homeostatic aspects of low-temperature-induced longevity remain poorly understood. Here, we show that lipid homeostasis regulated by Caenorhabditis elegans Mediator 15 (MDT-15 or MED15), a transcriptional coregulator, is essential for low-temperature-induced longevity and proteostasis. We find that inhibition of mdt-15 prevents animals from living long at low temperatures. We show that MDT-15 up-regulates fat-7, a fatty acid desaturase that converts saturated fatty acids (SFAs) to unsaturated fatty acids (UFAs), at low temperatures. We then demonstrate that maintaining a high UFA/SFA ratio is essential for proteostasis at low temperatures. We show that dietary supplementation with a monounsaturated fatty acid, oleic acid (OA), substantially mitigates the short life span and proteotoxicity in mdt-15(-) animals at low temperatures. Thus, lipidostasis regulated by MDT-15 appears to be a limiting factor for proteostasis and longevity at low temperatures. Our findings highlight the crucial roles of lipid regulation in maintaining normal organismal physiology under different environmental conditions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/fisiologia , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans , Temperatura Baixa , Suplementos Nutricionais , Ácidos Graxos Dessaturases/metabolismo , Homeostase , Metabolismo dos Lipídeos , Ácido Oleico/administração & dosagem , Proteostase , Ativação Transcricional
4.
Int J Mol Sci ; 23(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35743267

RESUMO

Recent advances in optical clearing techniques have dramatically improved deep tissue imaging by reducing the obscuring effects of light scattering and absorption. However, these optical clearing methods require specialized equipment or a lengthy undertaking with complex protocols that can lead to sample volume changes and distortion. In addition, the imaging of cleared tissues has limitations, such as fluorescence bleaching, harmful and foul-smelling solutions, and the difficulty of handling samples in high-viscosity refractive index (RI) matching solutions. To address the various limitations of thick tissue imaging, we developed an Aqueous high refractive Index matching and tissue Clearing solution for Imaging (termed AICI) with a one-step tissue clearing protocol that was easily made at a reasonable price in our own laboratory without any equipment. AICI can rapidly clear a 1 mm thick brain slice within 90 min with simultaneous RI matching, low viscosity, and a high refractive index (RI = 1.466), allowing the imaging of the sample without additional processing. We compared AICI with commercially available RI matching solutions, including optical clear agents (OCAs), for tissue clearing. The viscosity of AICI is closer to that of water compared with other RI matching solutions, and there was a less than 2.3% expansion in the tissue linear morphology during 24 h exposure to AICI. Moreover, AICI remained fluid over 30 days of air exposure, and the EGFP fluorescence signal was only reduced to ~65% after 10 days. AICI showed a limited clearing of brain tissue >3 mm thick. However, fine neuronal structures, such as dendritic spines and axonal boutons, could still be imaged in thick brain slices treated with AICI. Therefore, AICI is useful not only for the three-dimensional (3D) high-resolution identification of neuronal structures, but also for the examination of multiple structural imaging by neuronal distribution, projection, and gene expression in deep brain tissue. AICI is applicable beyond the imaging of fluorescent antibodies and dyes, and can clear a variety of tissue types, making it broadly useful to researchers for optical imaging applications.


Assuntos
Encéfalo , Imagem Óptica , Animais , Encéfalo/diagnóstico por imagem , Imunofluorescência , Imageamento Tridimensional/métodos , Camundongos , Neurônios , Imagem Óptica/métodos , Refratometria
5.
Int J Mol Sci ; 23(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269751

RESUMO

The hypothalamic arcuate nucleus (Arc) is a central unit that controls the appetite through the integration of metabolic, hormonal, and neuronal afferent inputs. Agouti-related protein (AgRP), proopiomelanocortin (POMC), and dopaminergic neurons in the Arc differentially regulate feeding behaviors in response to hunger, satiety, and appetite, respectively. At the time of writing, the anatomical and electrophysiological characterization of these three neurons has not yet been intensively explored. Here, we interrogated the overall characterization of AgRP, POMC, and dopaminergic neurons using genetic mouse models, immunohistochemistry, and whole-cell patch recordings. We identified the distinct geographical location and intrinsic properties of each neuron in the Arc with the transgenic lines labelled with cell-specific reporter proteins. Moreover, AgRP, POMC, and dopaminergic neurons had different firing activities to ghrelin and leptin treatments. Ghrelin led to the increased firing rate of dopaminergic and AgRP neurons, and the decreased firing rate of POMC. In sharp contrast, leptin resulted in the decreased firing rate of AgRP neurons and the increased firing rate of POMC neurons, while it did not change the firing rate of dopaminergic neurons in Arc. These findings demonstrate the anatomical and physiological uniqueness of three hypothalamic Arc neurons to appetite control.


Assuntos
Núcleo Arqueado do Hipotálamo , Pró-Opiomelanocortina , Proteína Relacionada com Agouti/genética , Animais , Apetite , Núcleo Arqueado do Hipotálamo/metabolismo , Grelina/metabolismo , Grelina/farmacologia , Leptina/metabolismo , Camundongos , Neurônios/metabolismo , Pró-Opiomelanocortina/genética
6.
Int J Mol Sci ; 23(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35270019

RESUMO

Endothelial cell senescence is involved in endothelial dysfunction and vascular diseases. However, the detailed mechanisms of endothelial senescence are not fully understood. Here, we demonstrated that deficiency of developmentally regulated GTP-binding protein 2 (DRG2) induces senescence and dysfunction of endothelial cells. DRG2 knockout (KO) mice displayed reduced cerebral blood flow in the brain and lung blood vessel density. We also determined, by Matrigel plug assay, aorta ring assay, and in vitro tubule formation of primary lung endothelial cells, that deficiency in DRG2 reduced the angiogenic capability of endothelial cells. Endothelial cells from DRG2 KO mice showed a senescence phenotype with decreased cell growth and enhanced levels of p21 and phosphorylated p53, γH2AX, senescence-associated ß-galactosidase (SA-ß-gal) activity, and senescence-associated secretory phenotype (SASP) cytokines. DRG2 deficiency in endothelial cells upregulated arginase 2 (Arg2) and generation of reactive oxygen species. Induction of SA-ß-gal activity was prevented by the antioxidant N-acetyl cysteine in endothelial cells from DRG2 KO mice. In conclusion, our results suggest that DRG2 is a key regulator of endothelial senescence, and its downregulation is probably involved in vascular dysfunction and diseases.


Assuntos
Células Endoteliais , Doenças Vasculares , Animais , Senescência Celular/genética , Células Endoteliais/metabolismo , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Doenças Vasculares/metabolismo
7.
EMBO J ; 36(8): 1046-1065, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28283579

RESUMO

Mitochondria play key roles in cellular immunity. How mitochondria contribute to organismal immunity remains poorly understood. Here, we show that HSP-60/HSPD1, a major mitochondrial chaperone, boosts anti-bacterial immunity through the up-regulation of p38 MAP kinase signaling. We first identify 16 evolutionarily conserved mitochondrial components that affect the immunity of Caenorhabditis elegans against pathogenic Pseudomonas aeruginosa (PA14). Among them, the mitochondrial chaperone HSP-60 is necessary and sufficient to increase resistance to PA14. We show that HSP-60 in the intestine and neurons is crucial for the resistance to PA14. We then find that p38 MAP kinase signaling, an evolutionarily conserved anti-bacterial immune pathway, is down-regulated by genetic inhibition of hsp-60, and up-regulated by increased expression of hsp-60 Overexpression of HSPD1, the mammalian ortholog of hsp-60, increases p38 MAP kinase activity in human cells, suggesting an evolutionarily conserved mechanism. Further, cytosol-localized HSP-60 physically binds and stabilizes SEK-1/MAP kinase kinase 3, which in turn up-regulates p38 MAP kinase and increases immunity. Our study suggests that mitochondrial chaperones protect host eukaryotes from pathogenic bacteria by up-regulating cytosolic p38 MAPK signaling.


Assuntos
Caenorhabditis elegans/imunologia , Chaperonina 60/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas Mitocondriais/imunologia , Pseudomonas aeruginosa/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Chaperonina 60/genética , Humanos , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/imunologia , Sistema de Sinalização das MAP Quinases/genética , Proteínas Mitocondriais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
8.
J Neuroinflammation ; 17(1): 299, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054766

RESUMO

BACKGROUND: Cytoplasmic inclusions of transactive response DNA binding protein of 43 kDa (TDP-43) in neurons and astrocytes are a feature of some neurodegenerative diseases, such as frontotemporal lobar degeneration with TDP-43 (FTLD-TDP) and amyotrophic lateral sclerosis (ALS). However, the role of TDP-43 in astrocyte pathology remains largely unknown. METHODS: To investigate whether TDP-43 overexpression in primary astrocytes could induce inflammation, we transfected primary astrocytes with plasmids encoding Gfp or TDP-43-Gfp. The inflammatory response and upregulation of PTP1B in transfected cells were examined using quantitative RT-PCR and immunoblot analysis. Neurotoxicity was analysed in a transwell coculture system of primary cortical neurons with astrocytes and cultured neurons treated with astrocyte-conditioned medium (ACM). We also examined the lifespan, performed climbing assays and analysed immunohistochemical data in pan-glial TDP-43-expressing flies in the presence or absence of a Ptp61f RNAi transgene. RESULTS: PTP1B inhibition suppressed TDP-43-induced secretion of inflammatory cytokines (interleukin 1 beta (IL-1ß), interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α)) in primary astrocytes. Using a neuron-astrocyte coculture system and astrocyte-conditioned media treatment, we demonstrated that PTP1B inhibition attenuated neuronal death and mitochondrial dysfunction caused by overexpression of TDP-43 in astrocytes. In addition, neuromuscular junction (NMJ) defects, a shortened lifespan, inflammation and climbing defects caused by pan-glial overexpression of TDP-43 were significantly rescued by downregulation of ptp61f (the Drosophila homologue of PTP1B) in flies. CONCLUSIONS: These results indicate that PTP1B inhibition mitigates the neuronal toxicity caused by TDP-43-induced inflammation in mammalian astrocytes and Drosophila glial cells.


Assuntos
Astrócitos/metabolismo , Proteínas de Ligação a DNA/biossíntese , Mediadores da Inflamação/metabolismo , Degeneração Neural/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/biossíntese , Animais , Animais Geneticamente Modificados , Astrócitos/patologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Drosophila , Expressão Gênica , Mediadores da Inflamação/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/genética , Degeneração Neural/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
9.
Glia ; 67(9): 1667-1679, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31050055

RESUMO

During postnatal neurodevelopment, excessive synapses must be eliminated by microglia to complete the establishment of neural circuits in the brain. The lack of synaptic regulation by microglia has been implicated in neurodevelopmental disorders such as autism, schizophrenia, and intellectual disability. Here we suggest that vaccinia-related kinase 2 (VRK2), which is expressed in microglia, may stimulate synaptic elimination by microglia. In VRK2-deficient mice (VRK2KO ), reduced numbers of presynaptic puncta within microglia were observed. Moreover, the numbers of presynaptic puncta and synapses were abnormally increased in VRK2KO mice by the second postnatal week. These differences did not persist into adulthood. Even though an increase in the number of synapses was normalized, adult VRK2KO mice showed behavioral defects in social behaviors, contextual fear memory, and spatial memory.


Assuntos
Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Microglia/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Sinapses/enzimologia , Animais , Encéfalo/citologia , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo/fisiologia , Humanos , Masculino , Memória/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Proteínas Serina-Treonina Quinases/genética , Comportamento Social , Técnicas de Cultura de Tecidos
10.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861806

RESUMO

Developmentally regulated GTP-binding protein 2 (DRG2) was first identified in the central nervous system of mice. However, the physiological function of DRG2 in the brain remains largely unknown. Here, we demonstrated that knocking out DRG2 impairs the function of dopamine neurons in mice. DRG2 was strongly expressed in the neurons of the dopaminergic system such as those in the striatum (Str), ventral tegmental area (VTA), and substantia nigra (SN), and on neuronal cell bodies in high-density regions such as the hippocampus (HIP), cerebellum, and cerebral cortex in the mouse brain. DRG2 knockout (KO) mice displayed defects in motor function in motor coordination and rotarod tests and increased anxiety. However, unexpectedly, DRG2 depletion did not affect the dopamine (DA) neuron population in the SN, Str, or VTA region or dopamine synthesis in the Str region. We further demonstrated that dopamine release was significantly diminished in the Str region of DRG2 KO mice and that treatment of DRG2 KO mice with l-3,4-dihydroxyphenylalanine (L-DOPA), a dopamine precursor, rescued the behavioral motor deficiency in DRG2 KO mice as observed with the rotarod test. This is the first report to identify DRG2 as a key regulator of dopamine release from dopamine neurons in the mouse brain.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Proteínas de Ligação ao GTP/genética , Transtornos Motores/genética , Animais , Ansiedade/genética , Ansiedade/metabolismo , Corpo Estriado/citologia , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Proteínas de Ligação ao GTP/análise , Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Camundongos , Camundongos Knockout , Transtornos Motores/metabolismo
11.
J Cell Sci ; 128(9): 1848-61, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25795301

RESUMO

The 5-hydroxytryptamine (5-HT, also known as serotonin) subtype 6 receptor (5-HT6R, also known as HTR6) plays roles in cognition, anxiety and learning and memory disorders, yet new details concerning its regulation remain poorly understood. In this study, we found that 5-HT6R directly interacted with SNX14 and that this interaction dramatically increased internalization and degradation of 5-HT6R. Knockdown of endogenous SNX14 had the opposite effect. SNX14 is highly expressed in the brain and contains a putative regulator of G-protein signaling (RGS) domain. Although its RGS domain was found to be non-functional as a GTPase activator for Gαs, we found that it specifically bound to and sequestered Gαs, thus inhibiting downstream cAMP production. We further found that protein kinase A (PKA)-mediated phosphorylation of SNX14 inhibited its binding to Gαs and diverted SNX14 from Gαs binding to 5-HT6R binding, thus facilitating the endocytic degradation of the receptor. Therefore, our results suggest that SNX14 is a dual endogenous negative regulator in 5-HT6R-mediated signaling pathway, modulating both signaling and trafficking of 5-HT6R.


Assuntos
Neurônios/metabolismo , Receptores de Serotonina/metabolismo , Transdução de Sinais , Nexinas de Classificação/metabolismo , Animais , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/metabolismo , Endocitose , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Ratos
12.
Biochem Biophys Res Commun ; 486(4): 1014-1020, 2017 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-28363867

RESUMO

Mitochondrial dynamics, including constant fusion and fission, play critical roles in maintaining mitochondrial morphology and function. Here, we report that developmentally regulated GTP-binding protein 2 (DRG2) regulates mitochondrial morphology by modulating the expression of the mitochondrial fission gene dynamin-related protein 1 (Drp1). shRNA-mediated silencing of DRG2 induced mitochondrial swelling, whereas expression of an shRNA-resistant version of DRG2 decreased mitochondrial swelling in DRG2-depleted cells. Analysis of the expression levels of genes involved in mitochondrial fusion and fission revealed that DRG2 depletion significantly decreased the level of Drp1. Overexpression of Drp1 rescued the defect in mitochondrial morphology induced by DRG2 depletion. DRG2 depletion reduced the mitochondrial membrane potential, oxygen consumption rate (OCR), and amount of mitochondrial DNA (mtDNA), whereas it increased reactive oxygen species (ROS) production and apoptosis. Taken together, our data demonstrate that DRG2 acts as a regulator of mitochondrial fission by controlling the expression of Drp1.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Regulação para Baixo/fisiologia , Dinaminas , Células HeLa , Humanos
13.
J Biol Chem ; 288(41): 29453-66, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24003235

RESUMO

SNX26, a brain-enriched RhoGAP, plays a key role in dendritic arborization during early neuronal development in the neocortex. In mature neurons, it is localized to dendritic spines, but little is known about its role in later stages of development. Our results show that SNX26 interacts with PSD-95 in dendritic spines of cultured hippocampal neurons, and as a GTPase-activating protein for Cdc42, it decreased the F-actin content in COS-7 cells and in dendritic spines of neurons. Overexpression of SNX26 resulted in a GTPase-activating protein activity-dependent decrease in total protrusions and spine density together with dramatic inhibition of filopodia-to-spine transformations. Such effects of SNX26 were largely rescued by a constitutively active mutant of Cdc42. Consistently, an shRNA-mediated knockdown of SNX26 significantly increased total protrusions and spine density, resulting in an increase in thin or stubby type spines at the expense of the mushroom spine type. Moreover, endogenous expression of SNX26 was shown to be bi-directionally modulated by neuronal activity. Therefore, we propose that in addition to its key role in neuronal development, SNX26 also has a role in the activity-dependent structural change of dendritic spines in mature neurons.


Assuntos
Espinhas Dendríticas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Guanilato Quinases/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Nexinas de Classificação/metabolismo , Actinas/metabolismo , Animais , Sítios de Ligação , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteína 4 Homóloga a Disks-Large , Proteínas Ativadoras de GTPase/genética , Guanilato Quinases/genética , Células HEK293 , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Humanos , Immunoblotting , Proteínas de Membrana/genética , Camundongos , Microscopia Confocal , Neurônios/citologia , Ligação Proteica , Pseudópodes/metabolismo , Interferência de RNA , Ratos , Nexinas de Classificação/genética , Fatores de Tempo
14.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688719

RESUMO

Glutamatergic mossy cells (MCs) mediate associational and commissural connectivity, exhibiting significant heterogeneity along the septotemporal axis of the mouse dentate gyrus (DG). However, it remains unclear whether the neuronal features of MCs are conserved across mammals. This study compares the neuroanatomy of MCs in the DG of mice and monkeys. The MC marker, calretinin, distinguishes two subpopulations: septal and temporal. Dual-colored fluorescence labeling is utilized to compare the axonal projection patterns of these subpopulations. In both mice and monkeys, septal and temporal MCs project axons across the longitudinal axis of the ipsilateral DG, indicating conserved associational projections. However, unlike in mice, no MC subpopulations in monkeys make commissural projections to the contralateral DG. In monkeys, temporal MCs send associational fibers exclusively to the inner molecular layer, while septal MCs give rise to wide axonal projections spanning multiple molecular layers, akin to equivalent MC subpopulations in mice. Despite conserved septotemporal heterogeneity, interspecies differences are observed in the topological organization of septal MCs, particularly in the relative axonal density in each molecular layer along the septotemporal axis of the DG. In summary, this comparative analysis sheds light on both conserved and divergent features of MCs in the DG of mice and monkeys. These findings have implications for understanding functional differentiation along the septotemporal axis of the DG and contribute to our knowledge of the anatomical evolution of the DG circuit in mammals.


Assuntos
Axônios , Calbindina 2 , Giro Denteado , Camundongos Endogâmicos C57BL , Animais , Masculino , Giro Denteado/citologia , Giro Denteado/anatomia & histologia , Calbindina 2/metabolismo , Fibras Musgosas Hipocampais/fisiologia , Camundongos , Especificidade da Espécie , Feminino
15.
J Neurosci ; 32(26): 8845-54, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22745485

RESUMO

The blood-brain barrier (BBB), which is formed by adherens and tight junctions (TJs) of endothelial cells, maintains homeostasis of the brain. Disrupted intracellular Ca²âº homeostasis and breakdown of the BBB have been implicated in the pathogenesis of Alzheimer's disease (AD). The receptor for advanced glycation end products (RAGE) is known to interact with amyloid ß-peptide (Aß) and mediate Aß transport across the BBB, contributing to the deposition of Aß in the brain. However, molecular mechanisms underlying Aß-RAGE interaction-induced alterations in the BBB have not been identified. We found that Aß1₋42 induces enhanced permeability, disruption of zonula occludin-1 (ZO-1) expression in the plasma membrane, and increased intracellular calcium and matrix metalloproteinase (MMP) secretion in cultured endothelial cells. Neutralizing antibodies against RAGE and inhibitors of calcineurin and MMPs prevented Aß1₋42-induced changes in ZO-1, suggesting that Aß-RAGE interactions alter TJ proteins through the Ca²âº-calcineurin pathway. Consistent with these in vitro findings, we found disrupted microvessels near Aß plaque-deposited areas, elevated RAGE expression, and enhanced MMP secretion in microvessels of the brains of 5XFAD mice, an animal model for AD. We have identified a potential molecular pathway underlying Aß-RAGE interaction-induced breakage of BBB integrity. This pathway might play an important role in the pathogenesis of AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/patologia , Calcineurina/metabolismo , Cálcio/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais/fisiologia , Junções Íntimas/metabolismo , Fatores Etários , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Transporte Biológico , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular Transformada , Claudinas/metabolismo , Dextranos/metabolismo , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Células Endoteliais , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Regulação da Expressão Gênica/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Imageamento Tridimensional , Imunossupressores/farmacologia , Metaloproteinases da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/patologia , Mutação/genética , Fragmentos de Peptídeos/farmacologia , Fosfoproteínas/metabolismo , Presenilina-1/genética , Inibidores de Proteases/farmacologia , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tacrolimo/farmacologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Junções Íntimas/ultraestrutura , Transfecção , Proteína da Zônula de Oclusão-1
16.
J Biol Chem ; 287(38): 31813-22, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22843680

RESUMO

Calcyon, once known for interacting directly with the dopamine D(1) receptor (D(1)DR), is implicated in various neuropsychiatric disorders including schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Although its direct interaction with D(1)DR has been shown to be misinterpreted, it still plays important roles in D(1)DR signaling. Here, we found that calcyon interacts with the PSD-95 and subsequently forms a ternary complex with D(1)DR through PSD-95. Calcyon is phosphorylated on Ser-169 by the PKC activator phorbol 12-myristate 13-acetate or by the D(1)DR agonist SKF-81297, and its phosphorylation increases its association with PSD-95 and recruitment to the cell surface. Interestingly, the internalization of D(1)DR at the cell surface was enhanced by phorbol 12-myristate 13-acetate and SKF-81297 in the presence of calcyon, but not in the presence of its S169A phospho-deficient mutant, suggesting that the phosphorylation of calcyon and the internalization of the surface D(1)DR are tightly correlated. Our results suggest that calcyon regulates D(1)DR trafficking by forming a ternary complex with D(1)DR through PSD-95 and thus possibly linking glutamatergic and dopamine receptor signalings. This also raises the possibility that a novel ternary complex could represent a potential therapeutic target for the modulation of related neuropsychiatric disorders.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Receptores de Dopamina D1/química , Animais , Encéfalo/metabolismo , Proteína 4 Homóloga a Disks-Large , Endocitose , Biblioteca Gênica , Células HEK293 , Humanos , Modelos Neurológicos , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Ratos , Receptores Dopaminérgicos/química , Transdução de Sinais
17.
Methods Protoc ; 6(6)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37987355

RESUMO

Whole-brain imaging is important for understanding brain functions through deciphering tissue structures, neuronal circuits, and single-neuron tracing. Thus, many clearing methods have been developed to acquire whole-brain images or images of three-dimensional thick tissues. However, there are several limitations to imaging whole-brain volumes, including long image acquisition times, large volumes of data, and a long post-image process. Based on these limitations, many researchers are unsure about which light microscopy is most suitable for imaging thick tissues. Here, we compared fast-confocal microscopy with light-sheet fluorescence microscopy for whole-brain three-dimensional imaging, which can acquire images the fastest. To compare the two types of microscopies for large-volume imaging, we performed tissue clearing of a whole mouse brain, and changed the sample chamber and low- magnification objective lens and modified the sample holder of a light-sheet fluorescence microscope. We found out that light-sheet fluorescence microscopy using a 2.5× objective lens possesses several advantages, including saving time, large-volume image acquisitions, and high Z-resolution, over fast-confocal microscopy, which uses a 4× objective lens. Therefore, we suggest that light-sheet fluorescence microscopy is suitable for whole mouse brain imaging and for obtaining high-resolution three-dimensional images.

18.
Mol Cells ; 45(8): 537-549, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35950455

RESUMO

Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-likelike 2 (NELL2) on PPE gene expression. In cultured NIH3T3 cells, transfection of NELL2 expression vectors induced an inhibition of PPE transcription intracellularly, in parallel with downregulation of protein kinase C signaling pathways and extracellular signal-regulated kinase. Interestingly, these phenomena were reversed when synthetic NELL2 was administered extracellularly. The in vivo disruption of NELL2 synthesis resulted in an increase in PPE mRNA level in the rat brain, suggesting that the inhibitory action of intracellular NELL2 predominates the activation effect of extracellular NELL2 on PPE gene expression in the brain. Biochemical and molecular studies with mutant NELL2 structures further demonstrated the critical role of EGF-like repeat domains in NELL2 for regulation of PPE transcription. These are the first results to reveal the spatio-specific role of NELL2 in the homeostatic regulation of PPE gene expression.


Assuntos
Fator de Crescimento Epidérmico , Proteínas do Tecido Nervoso , Animais , Encefalinas , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/farmacologia , Expressão Gênica , Camundongos , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Precursores de Proteínas , Ratos
19.
Br J Pharmacol ; 179(5): 998-1016, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34524687

RESUMO

BACKGROUND AND PURPOSE: There is a scarcity of information regarding the role of prothrombin kringle-2 (pKr-2), which can be generated by active thrombin, in hippocampal neurodegeneration and Alzheimer's disease (AD). EXPERIMENTAL APPROACH: To assess the role of pKr-2 in association with the neurotoxic symptoms of AD, we determined pKr-2 protein levels in post-mortem hippocampal tissues of patients with AD and the hippocampi of five familial AD (5XFAD) mice compared with those of age-matched controls and wild-type (WT) mice, respectively. In addition, we investigated whether the hippocampal neurodegeneration and object memory impairments shown in 5XFAD mice were mediated by changes to pKr-2 up-regulation. KEY RESULTS: Our results demonstrated that pKr-2 was up-regulated in the hippocampi of patients with AD and 5XFAD mice, but was not associated with amyloid-ß aggregation in 5XFAD mice. The up-regulation of pKr-2 expression was inhibited by preservation of the blood-brain barrier (BBB) via addition of caffeine to their water supply or by treatment with rivaroxaban, an inhibitor of factor Xa that is associated with thrombin production. Moreover, the prevention of up-regulation of pKr-2 expression reduced neurotoxic symptoms, such as hippocampal neurodegeneration and object recognition decline due to neurotoxic inflammatory responses in 5XFAD mice. CONCLUSION AND IMPLICATIONS: We identified a novel pathological mechanism of AD mediated by abnormal accumulation of pKr-2, which functions as an important pathogenic factor in the adult brain via blood brain barrier (BBB) breakdown. Thus, pKr-2 represents a novel target for AD therapeutic strategies and those for related conditions.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Kringles , Camundongos , Camundongos Transgênicos , Protrombina/metabolismo , Protrombina/uso terapêutico , Trombina
20.
J Neurochem ; 116(5): 909-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21214554

RESUMO

Astrocytes possess much of the same exocytotic protein machinery as neurons do and can release various gliotransmitters stored in their secretory vesicles. An essential component of this exocytotic machinery is the vesicle-associated membrane protein synaptobrevin 2 (Sb2). In order to assess whether vesicular age plays a role in determining the intracellular location of vesicles in astrocytes, we generated a fluorescent chimeric form of Sb2. We appended the Sb2 cytosolic N-terminus with the fluorescent 'timer' protein DsRedE5, which changes its fluorescence emission from green to red as it ages. We found that Sb2-containing vesicles in astrocytes segregate and localize intracellularly in an age dependent manner. Younger vesicles predominately localize at the periphery of cell somata and processes, while older vesicles predominately locate at the central portion of the cell body. These findings raise the notion that there might be differential astrocyte-neuron signaling at sites away or at the tripartite synapse that could be modulated by the age of vesicles and/or their cargo.


Assuntos
Envelhecimento , Astrócitos/citologia , Vesículas Secretórias/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Transfecção , Córtex Visual/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA