Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1349367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444810

RESUMO

The human gut microbiota is a complex microbial community with critical functions for the host, including the transformation of various chemicals. While effects on microorganisms has been evaluated using single-species models, their functional effects within more complex microbial communities remain unclear. In this study, we investigated the response of a simplified human gut microbiota model (SIHUMIx) cultivated in an in vitro bioreactor system in combination with 96 deep-well plates after exposure to 90 different xenobiotics, comprising 54 plant protection products and 36 food additives and dyes, at environmentally relevant concentrations. We employed metaproteomics and metabolomics to evaluate changes in bacterial abundances, the production of Short Chain Fatty Acids (SCFAs), and the regulation of metabolic pathways. Our findings unveiled significant changes induced by 23 out of 54 plant protection products and 28 out of 36 food additives across all three categories assessed. Notable highlights include azoxystrobin, fluroxypyr, and ethoxyquin causing a substantial reduction (log2FC < -0.5) in the concentrations of the primary SCFAs: acetate, butyrate, and propionate. Several food additives had significant effects on the relative abundances of bacterial species; for example, acid orange 7 and saccharin led to a 75% decrease in Clostridium butyricum, with saccharin causing an additional 2.5-fold increase in E. coli compared to the control. Furthermore, both groups exhibited up- and down-regulation of various pathways, including those related to the metabolism of amino acids such as histidine, valine, leucine, and isoleucine, as well as bacterial secretion systems and energy pathways like starch, sucrose, butanoate, and pyruvate metabolism. This research introduces an efficient in vitro technique that enables high-throughput screening of the structure and function of a simplified and well-defined human gut microbiota model against 90 chemicals using metaproteomics and metabolomics. We believe this approach will be instrumental in characterizing chemical-microbiota interactions especially important for regulatory chemical risk assessments.

2.
J Hazard Mater ; 474: 134683, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38820745

RESUMO

The microbial community present in our intestines is pivotal for converting indigestible substances into vital nutrients and signaling molecules such as short-chain fatty acids (SCFAs). These compounds have considerable influence over our immune system and the development of diverse human diseases. However, ingested environmental contaminants, known as xenobiotics, can upset the delicate balance of the microbial gut community and enzymatic processes, consequently affecting the host organism. In our study, we employed an in vitro bioreactor model system based on the simplified human microbiome model (SIHUMIx) to investigate the direct effects of specific xenobiotics, such as perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA) or bisphenol S (BPS) and bisphenol F (BPF), either individually or in combination, on the microbiota. We observed increased SCFA production, particularly acetate and butyrate, with PFAS exposure. Metaproteomics revealed pathway alterations across treatments, including changes in vitamin synthesis and fatty acid metabolism with BPX. This study underscores the necessity of assessing the combined effects of xenobiotics to better safeguard public health. It emphasizes the significance of considering adverse effects on the microbiome in the risk assessment of environmental chemicals.


Assuntos
Compostos Benzidrílicos , Ácidos Graxos Voláteis , Fluorocarbonos , Microbioma Gastrointestinal , Xenobióticos , Humanos , Xenobióticos/toxicidade , Xenobióticos/metabolismo , Fluorocarbonos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Reatores Biológicos , Sulfonas/toxicidade , Poluentes Ambientais/toxicidade
3.
Microbiome Res Rep ; 3(2): 14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841406

RESUMO

The intestinal microbiota and its metabolites are known to influence host metabolic health. However, little is known about the role of specific microbes. In this work, we used the minimal consortium Oligo-Mouse-Microbiota (OMM12) to study the function of Coriobacteriia under defined conditions in gnotobiotic mice. OMM12 mice with or without the addition of the dominant gut bacterium Eggerthella lenta (E. lenta) were fed with diets varying in fat content and primary bile acids. E. lenta stably colonised the mouse caecum at high relative abundances (median: 27.5%). This was accompanied by decreased occurrence of Akkermansia muciniphila and Enterococcus faecalis, but results did not reach statistical significance in all groups depending on diet and inter-individual differences. Changes in host parameters (anthropometry, blood glucose, and cholesterol) and liver proteomes were primarily due to diet. In contrast, metabolomes in colon content differed significantly between the colonisation groups. The presence of E. lenta was associated with elevated levels of latifolicinin C acid and decreased creatine, sarcosine, N,N-dimethylarginine, and N-Acetyl-DL-methionine. In conclusion, E. lenta altered specific metabolites in the colon but did not have significant effects on the mice or liver proteomes under the conditions tested due to marked inter-individual differences.

4.
Gut Microbes ; 16(1): 2297831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165179

RESUMO

The prevalence of inflammatory bowel disease (IBD) is rising globally; however, its etiology is still not fully understood. Patient genetics, immune system, and intestinal microbiota are considered critical factors contributing to IBD. Preclinical animal models are crucial to better understand the importance of individual contributing factors. Among these, the dextran sodium sulfate (DSS) colitis model is the most widely used. DSS treatment induces gut inflammation and dysbiosis. However, its exact mode of action remains unclear. To determine whether DSS treatment induces pathogenic changes in the microbiota, we investigated the microbiota-modulating effects of DSS on murine microbiota in vitro. For this purpose, we cultured murine microbiota from the colon in six replicate continuous bioreactors. Three bioreactors were supplemented with 1% DSS and compared with the remaining PBS-treated control bioreactors by means of microbiota taxonomy and functionality. Using metaproteomics, we did not identify significant changes in microbial taxonomy, either at the phylum or genus levels. No differences in the metabolic pathways were observed. Furthermore, the global metabolome and targeted short-chain fatty acid (SCFA) quantification did not reveal any DSS-related changes. DSS had negligible effects on microbial functionality and taxonomy in vitro in the absence of the host environment. Our results underline that the DSS colitis mouse model is a suitable model to study host-microbiota interactions, which may help to understand how intestinal inflammation modulates the microbiota at the taxonomic and functional levels.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Microbiota , Humanos , Camundongos , Animais , Colo/metabolismo , Doenças Inflamatórias Intestinais/patologia , Inflamação/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Front Immunol ; 15: 1298971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953021

RESUMO

Introduction: More than 350,000 chemicals make up the chemical universe that surrounds us every day. The impact of this vast array of compounds on our health is still poorly understood. Manufacturers are required to carry out toxicological studies, for example on the reproductive or nervous systems, before putting a new substance on the market. However, toxicological safety does not exclude effects resulting from chronic exposure to low doses or effects on other potentially affected organ systems. This is the case for the microbiome-immune interaction, which is not yet included in any safety studies. Methods: A high-throughput in vitro model was used to elucidate the potential effects of environmental chemicals and chemical mixtures on microbiome-immune interactions. Therefore, a simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species was cultured in vitro in a bioreactor that partially mimics intestinal conditions. The bacteria were continuously exposed to mixtures of representative and widely distributed environmental chemicals, i.e. bisphenols (BPX) and/or per- and polyfluoroalkyl substances (PFAS) at concentrations of 22 µM and 4 µM, respectively. Furthermore, changes in the immunostimulatory potential of exposed microbes were investigated using a co-culture system with human peripheral blood mononuclear cells (PBMCs). Results: The exposure to BPX, PFAS or their mixture did not influence the community structure and the riboflavin production of SIHUMIx in vitro. However, it altered the potential of the consortium to stimulate human immune cells: in particular, activation of CD8+ MAIT cells was affected by the exposure to BPX- and PFAS mixtures-treated bacteria. Discussion: The present study provides a model to investigate how environmental chemicals can indirectly affect immune cells via exposed microbes. It contributes to the much-needed knowledge on the effects of EDCs on an organ system that has been little explored in this context, especially from the perspective of cumulative exposure.


Assuntos
Microbioma Gastrointestinal , Fenóis , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Fluorocarbonos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Técnicas de Cocultura , Poluentes Ambientais/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA