Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36361803

RESUMO

The endocannabinoid system is involved in physiological and pathological processes, including pain generation, modulation, and sensation. Its role in certain types of chronic orofacial pain (OFP) has not been thoroughly examined. By exploring the profiles of specific salivary endocannabinoids (eCBs) in individuals with different types of OFP, we evaluated their use as biomarkers and the influence of clinical parameters and pain characteristics on eCB levels. The salivary levels of anandamide (AEA), 2-arachidonoyl glycerol (2-AG), and their endogenous breakdown product arachidonic acid (AA), as well as the eCB-like molecules N-palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), were assessed in 83 OFP patients and 43 pain-free controls using liquid chromatography/tandem mass spectrometry. Patients were grouped by diagnosis: post-traumatic neuropathy (PTN), trigeminal neuralgia (TN), temporomandibular disorder (TMD), migraine, tension-type headache (TTH), and burning mouth syndrome (BMS). Correlation analyses between a specific diagnosis, pain characteristics, and eCB levels were conducted. Significantly lower levels of 2-AG were found in the TN and TTH groups, while significantly lower PEA levels were found in the migraine group. BMS was the only group with elevated eCBs (AEA) versus the control. Significant correlations were found between levels of specific eCBs and gender, health-related quality of life (HRQoL), BMI, pain duration, and sleep awakenings. In conclusion, salivary samples exhibited signature eCBs profiles for major OFP disorders, especially migraine, TTH, TN, and BMS. This finding may pave the way for using salivary eCBs biomarkers for more accurate diagnoses and management of chronic OFP patients.


Assuntos
Transtornos da Cefaleia , Transtornos de Enxaqueca , Humanos , Endocanabinoides/metabolismo , Qualidade de Vida , Biomarcadores , Dor Facial/diagnóstico
2.
Molecules ; 27(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889535

RESUMO

BACKGROUND: the endocannabinoid system (ECS) participates in many physiological and pathological processes including pain generation, modulation, and sensation. Its involvement in chronic orofacial pain (OFP) in general, and the reflection of its involvement in OFP in salivary endocannabinoid (eCBs) levels in particular, has not been examined. OBJECTIVES: to evaluate the association between salivary (eCBs) levels and chronic OFP. METHODS: salivary levels of 2 eCBs, anandamide (AEA), 2-arachidonoylglycerol (2-AG), 2 endocannabinoid-like compoundsN-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), and their endogenous precursor and breakdown product, arachidonic acid (AA), were analyzed using liquid chromatography/tandem mass spectrometry in 83 chronic OFP patients and 43 pain-free controls. The chronic OFP patients were divided according to diagnosis into musculoskeletal, neurovascular/migraine, and neuropathic pain types. RESULTS: chronic OFP patients had lower levels of OEA (p = 0.02) and 2-AG (p = 0.01). Analyzing specific pain types revealed lower levels of AEA and OEA in the neurovascular group (p = 0.04, 0.02, respectively), and 2-AG in the neuropathic group compared to controls (p = 0.05). No significant differences were found between the musculoskeletal pain group and controls. Higher pain intensity was accompanied by lower levels of AA (p = 0.028), in neuropathic group. CONCLUSIONS: lower levels of eCBs were found in the saliva of chronic OFP patients compared to controls, specifically those with neurovascular/migraine, and neuropathic pain. The detection of changes in salivary endocannabinoids levels related to OFP adds a new dimension to our understanding of OFP mechanisms, and may have diagnostic as well as therapeutic implications for pain.


Assuntos
Transtornos de Enxaqueca , Neuralgia , Endocanabinoides/metabolismo , Dor Facial , Humanos , Saliva/metabolismo
3.
Diabetes Obes Metab ; 21(1): 146-159, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091204

RESUMO

AIMS: To evaluate the specific role of the endocannabinoid/cannabinoid type-1 (CB1 R) system in modulating mitochondrial dynamics in the metabolically active renal proximal tubular cells (RPTCs). MATERIALS AND METHODS: We utilized mitochondrially-targeted GFP in live cells (wild-type and null for the CB1 R) and electron microscopy in kidney sections of RPTC-CB1 R-/- mice and their littermate controls. In both in vitro and in vivo conditions, we assessed the ability of CB1 R agonism or fatty acid flux to modulate mitochondrial architecture and function. RESULTS: Direct stimulation of CB1 R resulted in mitochondrial fragmentation in RPTCs. This process was mediated, at least in part, by modulating the phosphorylation levels of the canonical fission protein dynamin-related protein 1 on both S637 and S616 residues. CB1 R-induced mitochondrial fission was associated with mitochondrial dysfunction, as documented by reduced oxygen consumption and ATP production, increased reactive oxygen species and cellular lactate levels, as well as a decline in mitochondrial biogenesis. Likewise, we documented that exposure of RPTCs to a fatty acid flux induced CB1 R-dependent mitochondrial fission, lipotoxicity and cellular dysfunction. CONCLUSIONS: CB1 R plays a key role in inducing mitochondrial fragmentation in RPTCs, leading to a decline in the organelle's function and contributing to the renal tubular injury associated with lipotoxicity and other metabolic diseases.


Assuntos
Túbulos Renais Proximais , Mitocôndrias/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Linhagem Celular , Túbulos Renais Proximais/química , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência
4.
J Chem Inf Model ; 59(9): 3996-4006, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31433190

RESUMO

Small molecules targeting peripheral CB1 receptors have therapeutic potential in a variety of disorders including obesity-related, hormonal, and metabolic abnormalities, while avoiding the psychoactive effects in the central nervous system. We applied our in-house algorithm, iterative stochastic elimination, to produce a ligand-based model that distinguishes between CB1R antagonists and random molecules by physicochemical properties only. We screened ∼2 million commercially available molecules and found that about 500 of them are potential candidates to antagonize the CB1R. We applied a few criteria for peripheral activity and narrowed that set down to 30 molecules, out of which 15 could be purchased. Ten out of those 15 showed good affinity to the CB1R and two of them with nanomolar affinities (Ki of ∼400 nM). The eight molecules with top affinities were tested for activity: two compounds were pure antagonists, and five others were inverse agonists. These molecules are now being examined in vivo for their peripheral versus central distribution and subsequently will be tested for their effects on obesity in small animals.


Assuntos
Biologia Computacional , Aprendizado de Máquina , Receptor CB1 de Canabinoide/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Simulação por Computador , Ligantes
5.
J Am Soc Nephrol ; 29(2): 434-448, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030466

RESUMO

Altered glucose reabsorption via the facilitative glucose transporter 2 (GLUT2) during diabetes may lead to renal proximal tubule cell (RPTC) injury, inflammation, and interstitial fibrosis. These pathologies are also triggered by activating the cannabinoid-1 receptor (CB1R), which contributes to the development of diabetic nephropathy (DN). However, the link between CB1R and GLUT2 remains to be determined. Here, we show that chronic peripheral CB1R blockade or genetically inactivating CB1Rs in the RPTCs ameliorated diabetes-induced renal structural and functional changes, kidney inflammation, and tubulointerstitial fibrosis in mice. Inhibition of CB1R also downregulated GLUT2 expression, affected the dynamic translocation of GLUT2 to the brush border membrane of RPTCs, and reduced glucose reabsorption. Thus, targeting peripheral CB1R or inhibiting GLUT2 dynamics in RPTCs has the potential to treat and ameliorate DN. These findings may support the rationale for the clinical testing of peripherally restricted CB1R antagonists or the development of novel renal-specific GLUT2 inhibitors against DN.


Assuntos
Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Túbulos Renais Proximais/patologia , Receptor CB1 de Canabinoide/metabolismo , Albuminúria/urina , Animais , Transporte Biológico , Glicemia/metabolismo , Nitrogênio da Ureia Sanguínea , Creatinina/urina , Nefropatias Diabéticas/induzido quimicamente , Cães , Fibrose , Glucose/metabolismo , Transportador de Glucose Tipo 2/antagonistas & inibidores , Insulina/sangue , Ilhotas Pancreáticas/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase C beta/metabolismo , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Estreptozocina , Sulfonamidas/farmacologia
6.
J Am Soc Nephrol ; 28(12): 3518-3532, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28860163

RESUMO

Obesity-related structural and functional changes in the kidney develop early in the course of obesity and occur independently of hypertension, diabetes, and dyslipidemia. Activating the renal cannabinoid-1 receptor (CB1R) induces nephropathy, whereas CB1R blockade improves kidney function. Whether these effects are mediated via a specific cell type within the kidney remains unknown. Here, we show that specific deletion of CB1R in the renal proximal tubule cells did not protect the mice from obesity, but markedly attenuated the obesity-induced lipid accumulation in the kidney and renal dysfunction, injury, inflammation, and fibrosis. These effects associated with increased activation of liver kinase B1 and the energy sensor AMP-activated protein kinase, as well as enhanced fatty acid ß-oxidation. Collectively, these findings indicate that renal proximal tubule cell CB1R contributes to the pathogenesis of obesity-induced renal lipotoxicity and nephropathy by regulating the liver kinase B1/AMP-activated protein kinase signaling pathway.


Assuntos
Regulação da Expressão Gênica , Falência Renal Crônica/metabolismo , Túbulos Renais Proximais/patologia , Obesidade/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Peso Corporal , Linhagem Celular , Ácidos Graxos/metabolismo , Fibrose , Deleção de Genes , Genótipo , Heterozigoto , Humanos , Inflamação , Falência Renal Crônica/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/complicações , Oxigênio/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor CB1 de Canabinoide/genética , Transdução de Sinais
7.
Eur J Immunol ; 44(3): 867-76, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24242955

RESUMO

Inositol-requiring enzyme 1 (IRE1) is a kinase and ribonuclease that executes the splicing of X box binding protein 1 (XBP-1) mRNA in response to the accumulation of unfolded protein in the ER, a signal cascade termed the unfolded protein response. Recently, IRE1 has been implicated in mRNA and miRNA cleavage and degradation, a pathway termed regulated IRE1-dependent decay (RIDD). Deletion of XBP-1 in the liver and pancreas strongly enhances RIDD by upregulating IRE1 protein levels and enhancing its ribo-nuclease activity. Because XBP-1 is essential for generating plasma cells with developed secretory capacity, we sought to evaluate the contribution of RIDD to this regulation. Mice were conditionally deleted for XBP-1 and/or IRE1 in their B-cell lineage. Similarly to the liver, deletion of XBP-1 induces IRE1 expression in LPS-treated B cells. In vitro, IRE1 cleaves the mRNA of secretory µ chains, which explains the reduction in secretory µ mRNA and its synthesis in XBP-1 KO plasma cells. In accordance, the IgM response is partially restored in XBP-1/IRE1 double KO mice relative to XBP-1 KO mice. Interestingly, the IgG1 response is reduced to a similar level in XBP-1 KO, IRE1 KO, and their double knockout animals. Our data demonstrate a specific contribution by RIDD in curtailing immunoglobulin synthesis and secretion.


Assuntos
Formação de Anticorpos/fisiologia , Imunoglobulinas/biossíntese , Proteínas de Membrana/metabolismo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Plasmócitos/ultraestrutura , Proteínas Serina-Treonina Quinases/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Linfócitos T/imunologia , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box
9.
J Biol Chem ; 287(37): 31223-32, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22822056

RESUMO

Endoplasmic reticulum (ER) stress develops when the ER is overloaded with too many proteins to fold. This elicits a signaling pathway called the unfolded protein response. The unfolded protein response is physiologically required for the terminal development of B cells into antibody-secreting plasma cells. Ring Box Protein 1 (RBX1) is a 14-kDa protein necessary for ubiquitin ligation activity of the multimeric cullin ring ubiquitin ligases (CRLs). As RBX1 is shared by a large number of CRLs, alterations in its activity may lead to global changes in protein stability. We discovered that RBX1 is cleaved in the course of LPS-induced plasma cell differentiation and in multiple myeloma cell lines upon induction of pharmacological ER stress. The cleavage is executed by several caspase proteases that cleave RBX1 eight amino acids from the N terminus. To address the possible implication of RBX1 cleavage for CRL activity, we replaced the endogenous RBX1 homolog of the yeast Saccharomyces cerevisiae, Roc1, with the wild type or the N-terminal Δ8 mutant human RBX1. We show that yeast expressing the cleaved RBX1 are hypersensitive to ER stress and are impaired in CRL-mediated ubiquitination and degradation. We propose a model by which N-terminal cleavage of RBX1 impairs its activity and promotes susceptibility to ER stress induction.


Assuntos
Proteínas de Transporte/metabolismo , Caspases/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Plasmócitos/metabolismo , Proteólise , Animais , Proteínas de Transporte/genética , Caspases/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Camundongos , Mutação , Plasmócitos/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitinação/fisiologia
10.
J Immunol ; 182(11): 7038-47, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19454701

RESUMO

Plasma cells (PCs) are terminally differentiated B lymphocytes responsible for the synthesis and secretion of Igs. The differentiation of B cells into PCs involves a remarkable expansion of both lipid and protein components of the endoplasmic reticulum. Despite their importance in many signal transduction pathways, the role of ceramides, and of complex sphingolipids that are derived from ceramide, in PC differentiation has never been directly studied. To assess their putative role in PC differentiation, we blocked ceramide synthesis with fumonisin B1, a specific inhibitor of ceramide synthase. Under fumonisin B1 treatment, N-linked glycosylation was severely impaired in LPS-activated, but not in naive, B cells. We also show that ceramide synthesis is strongly induced by XBP-1 (X box-binding protein-1). In the absence of ceramide synthesis, ER expansion was dramatically diminished. Our results underscore ceramide biosynthesis as a key metabolic pathway in the process of PC differentiation and reveal a previously unknown functional link between sphingolipids and N-linked glycosylation in PCs.


Assuntos
Linfócitos B/citologia , Diferenciação Celular , Ceramidas/biossíntese , Plasmócitos/metabolismo , Animais , Células Cultivadas , Proteínas de Ligação a DNA , Fumonisinas/farmacologia , Glicosilação , Lipopolissacarídeos/farmacologia , Redes e Vias Metabólicas , Camundongos , Oxirredutases/antagonistas & inibidores , Plasmócitos/citologia , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição , Proteína 1 de Ligação a X-Box
11.
Front Endocrinol (Lausanne) ; 12: 685289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531823

RESUMO

Background: Inflammatory bowel diseases (IBDs) are chronic, idiopathic, inflammatory, gastrointestinal disorders. The endocannabinoid system may have a role in the pathogenesis of IBD. We aimed to assess whether cannabis treatment influences endocannabinoids (eCBs) level and clinical symptoms of IBD patients. Methods: Blood samples and biopsies were taken from IBD patients treated by either cannabis or placebo for 8 weeks. Immunohistochemistry for N-acyl-phosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH) expression was done on colon biopsies, and sample levels of anandamide (AEA), eCB2-arachidonylglycerol (2-AG), arachidonic acid (AA), palmitoylethanolamine (PEA), and oleoylethanolamine (OEA) were measured in patient's sera before and after cannabis treatment. Caco-2 cells were cultured with extracts of cannabis with/without tetrahydrocannabinol (THC) and their proteins extracted, and Western blotting for NAPE-PLD and FAAH expression was done. Results: Thirteen patients with Crohn's disease (CD) and nine patients with ulcerative colitis (UC) were treated with cannabis. Seventeen patients with CD and 10 with UC served as placebo groups. In all CD patients, the levels of eCBs remained unaltered during the treatment period. In UC patients treated with placebo, but not in those treated with cannabis, the levels of PEA, AEA, and AA decreased significantly. The percent reduction in bowel movements was negatively correlated with changes observed in the circulating AEA and OEA, whereas improvement in quality of life was positively correlated with the levels of 2-AG. In the biopsies from UC patients, FAAH levels increased over the study period. In Caco-2 cells, both cannabis extracts increased NAPE-PLD levels but reduced FAAH expression levels. Conclusion: Our study supports the notion that cannabis use affects eCB "tone" in UC patients and may have beneficial effects on disease symptoms in UC patients.


Assuntos
Colite Ulcerativa/sangue , Doença de Crohn/sangue , Endocanabinoides/sangue , Maconha Medicinal/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Amidoidrolases/metabolismo , Células CACO-2 , Cannabis , Colite Ulcerativa/metabolismo , Colite Ulcerativa/terapia , Colo/efeitos dos fármacos , Colo/metabolismo , Doença de Crohn/metabolismo , Doença de Crohn/terapia , Método Duplo-Cego , Feminino , Humanos , Masculino , Maconha Medicinal/uso terapêutico , Pessoa de Meia-Idade , Fosfolipase D/metabolismo , Adulto Jovem
12.
Sci Rep ; 10(1): 17263, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037290

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Elife ; 92020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33210603

RESUMO

The soluble isoform of leptin receptor (sOb-R), secreted by the liver, regulates leptin bioavailability and bioactivity. Its reduced levels in diet-induced obesity (DIO) contribute to hyperleptinemia and leptin resistance, effects that are regulated by the endocannabinoid (eCB)/CB1R system. Here we show that pharmacological activation/blockade and genetic overexpression/deletion of hepatic CB1R modulates sOb-R levels and hepatic leptin resistance. Interestingly, peripheral CB1R blockade failed to reverse DIO-induced reduction of sOb-R levels, increased fat mass and dyslipidemia, and hepatic steatosis in mice lacking C/EBP homologous protein (CHOP), whereas direct activation of CB1R in wild-type hepatocytes reduced sOb-R levels in a CHOP-dependent manner. Moreover, CHOP stimulation increased sOb-R expression and release via a direct regulation of its promoter, while CHOP deletion reduced leptin sensitivity. Our findings highlight a novel molecular aspect by which the hepatic eCB/CB1R system is involved in the development of hepatic leptin resistance and in the regulation of sOb-R levels via CHOP.


When the human body has stored enough energy from food, it releases a hormone called leptin that travels to the brain and stops feelings of hunger. This hormone moves through the bloodstream and can affect other organs, such as the liver, which also help control our body's energy levels. Most people with obesity have very high levels of leptin in their blood, but are resistant to its effects and will therefore continue to feel hungry despite having stored enough energy. One of the proteins that controls the levels of leptin is a receptor called sOb-R, which is released by the liver and binds to leptin as it travels in the blood. Individuals with high levels of this receptor often have less free leptin in their bloodstream and a lower body weight. Another protein that helps the body to regulate its energy levels is the cannabinoid-1 receptor, or CB1R for short. In people with obesity, this receptor is overactive and has been shown to contribute to leptin resistance, which is when the brain becomes less receptive to leptin. Previous work in mice showed that blocking CB1R reduced the levels of leptin and allowed mice to react to this hormone normally again, but it remained unclear whether CB1R affects how other organs, such as the liver, respond to leptin. To answer this question, Drori et al. blocked the CB1R receptor in the liver of mice eating a high-fat diet, either by using a drug or by deleting the gene that codes for this protein. This caused mice to have higher levels of sOb-R circulating in their bloodstream. Further experiments showed that this change in sOb-R was caused by the levels of a protein called CHOP increasing in the liver when CB1R was blocked. Drori et al. found that inhibiting CB1R caused these obese mice to lose weight and have healthier, less fatty livers as a result of their livers no longer being resistant to the effects of leptin. Scientists, doctors and pharmaceutical companies are trying to develop new strategies to combat obesity. The results from these experiments suggest that blocking CB1R in the liver could allow this organ to react to leptin appropriately again. Drugs blocking CB1R, including the one used in this study, will be tested in clinical trials and could provide a new approach for treating obesity.


Assuntos
Estresse do Retículo Endoplasmático , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores para Leptina/metabolismo , Fator de Transcrição CHOP/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Receptores para Leptina/genética , Transdução de Sinais , Fator de Transcrição CHOP/genética
14.
Mol Metab ; 42: 101087, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32987186

RESUMO

OBJECTIVE: The endocannabinoid (eCB) system is increasingly recognized as being crucially important in obesity-related hepatic steatosis. By activating the hepatic cannabinoid-1 receptor (CB1R), eCBs modulate lipogenesis and fatty acid oxidation. However, the underlying molecular mechanisms are largely unknown. METHODS: We combined unbiased bioinformatics techniques, mouse genetic manipulations, multiple pharmacological, molecular, and cellular biology approaches, and genomic sequencing to systematically decipher the role of the hepatic CB1R in modulating fat utilization in the liver and explored the downstream molecular mechanisms. RESULTS: Using an unbiased normalized phylogenetic profiling analysis, we found that the CB1R evolutionarily coevolves with peroxisome proliferator-activated receptor-alpha (PPARα), a key regulator of hepatic lipid metabolism. In diet-induced obese (DIO) mice, peripheral CB1R blockade (using AM6545) induced the reversal of hepatic steatosis and improved liver injury in WT, but not in PPARα-/- mice. The antisteatotic effect mediated by AM6545 in WT DIO mice was accompanied by increased hepatic expression and activity of PPARα as well as elevated hepatic levels of the PPARα-activating eCB-like molecules oleoylethanolamide and palmitoylethanolamide. Moreover, AM6545 was unable to rescue hepatic steatosis in DIO mice lacking liver sirtuin 1 (SIRT1), an upstream regulator of PPARα. Both of these signaling molecules were modulated by the CB1R as measured in hepatocytes exposed to lipotoxic conditions or treated with CB1R agonists in the absence/presence of AM6545. Furthermore, using microRNA transcriptomic profiling, we found that the CB1R regulated the hepatic expression, acetylation, and transcriptional activity of p53, resulting in the enhanced expression of miR-22, which was found to specifically target SIRT1 and PPARα. CONCLUSIONS: We provide strong evidence for a functional role of the p53/miR-22/SIRT1/PPARα signaling pathway in potentially mediating the antisteatotic effect of peripherally restricted CB1R blockade.


Assuntos
Fígado Gorduroso/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Fígado Gorduroso/genética , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Obesidade/metabolismo , Oxirredução , PPAR alfa/metabolismo , Filogenia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Transdução de Sinais , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo
15.
Sci Rep ; 9(1): 16196, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700010

RESUMO

Brain trauma was clinically associated with increased osteogenesis in the appendicular skeleton. We showed previously in C57BL/6J mice that mild traumatic brain injury (mTBI) transiently induced bone formation in the femur via the cannabinoid-1 (CB1) receptor. Here, we subjected ICR mice to mTBI and examined the bone response in the skull using microCT. We also measured mast cell degranulation (MCD)72 h post-injury. Finally, we measured brain and calvarial endocannabinoids levels post-mTBI. mTBI led to decreased bone porosity on the contralateral (untouched) side. This effect was apparent both in young and mature mice. Administration of rimonabant (CB1 inverse agonist) completely abrogated the effect of mTBI on calvarial porosity and significantly reduced MCD, compared with vehicle-treated controls. We also found that mTBI resulted in elevated levels of anandamide, but not 2-arachidonoylglycerol, in the contralateral calvarial bone, whereas brain levels remained unchanged. In C57BL/6J CB1 knockout mice, mTBI did not reduce porosity but in general the porosity was significantly lower than in WT controls. Our findings suggest that mTBI induces a strain-specific CB1-dependent bone anabolic response in the skull, probably mediated by anandamide, but seemingly unrelated to inflammation. The endocannabinoid system is therefore a plausible target in management of bone response following head trauma.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Crânio/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Lesões Encefálicas Traumáticas/patologia , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Masculino , Mastócitos , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Alcamidas Poli-Insaturadas/metabolismo , Rimonabanto/farmacologia , Crânio/patologia
16.
J Bone Miner Res ; 34(1): 93-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347474

RESUMO

Among a multitude of hormonal and metabolic complications, individuals with Prader-Willi syndrome (PWS) exhibit significant bone abnormalities, including decreased BMD, osteoporosis, and subsequent increased fracture risk. Here we show in mice that loss of Magel2, a maternally imprinted gene in the PWS critical region, results in reduced bone mass, density, and strength, corresponding to that observed in humans with PWS, as well as in individuals suffering from Schaaf-Yang syndrome (SYS), a genetic disorder caused by a disruption of the MAGEL2 gene. The low bone mass phenotype in Magel2-/- mice was attributed to reduced bone formation rate, increased osteoclastogenesis and osteoclast activity, and enhanced trans-differentiation of osteoblasts to adipocytes. The absence of Magel2 in humans and mice resulted in reduction in the fatty acid amide bone homeostasis regulator, N-oleoyl serine (OS), whose levels were positively linked with BMD in humans and mice as well as osteoblast activity. Attenuating the skeletal abnormalities in Magel2-/- mice was achieved with chronic administration of a novel synthetic derivative of OS. Taken together, Magel2 plays a key role in modulating bone remodeling and mass in PWS by affecting OS levels and activity. The use of potent synthetic analogs of OS should be further tested clinically as bone therapeutics for treating bone loss. © 2018 American Society for Bone and Mineral Research.


Assuntos
Antígenos de Neoplasias , Remodelação Óssea , Osteogênese , Síndrome de Prader-Willi , Proteínas , Serina/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/genética , Remodelação Óssea/efeitos dos fármacos , Remodelação Óssea/genética , Humanos , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/patologia , Proteínas/genética , Proteínas/metabolismo , Serina/farmacologia
17.
J Med Chem ; 51(5): 1406-14, 2008 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-18257543

RESUMO

cis-2-Aminocyclohexylcarbamoylphosphonic acid ( cis-ACCP) was evaluated in vitro and in two in vivo cancer metastasis models. It reduced metastasis formation in mice by approximately 90% when administered by a repetitive once daily dosing regimen of 50 mg/kg via oral or intraperitoneal routes and was nontoxic up to 500 mg/kg, following intraperitoneal administration daily for two weeks. Pharmacokinetic investigation of cis-ACCP in rats revealed distribution restricted into the extracellular fluid, which is the site of action for the antimetastatic activity and rapid elimination ( t 1/2 approximately 19 min) from blood. Sustained and prolonged absorption ( t 1/2 approximately 126 min) occurred via paracellular mechanism along the small and large intestine with overall bioavailability of 0.3%. The in vivo concentrations of cis-ACCP in the blood in rats was above the minimal concentration for antimetastatic/MMP-inhibitory activity, thus explaining the prolonged action following once daily administration. Finally, 84% of the intravenously administered cis-ACCP to rats was excreted intact in the urine.


Assuntos
Antineoplásicos/síntese química , Inibidores de Metaloproteinases de Matriz , Organofosfonatos/síntese química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Disponibilidade Biológica , Linhagem Celular Tumoral , Cobamidas , Cicloexanos , Feminino , Humanos , Técnicas In Vitro , Absorção Intestinal , Masculino , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Organofosfonatos/farmacocinética , Organofosfonatos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Ratos , Relação Estrutura-Atividade , Distribuição Tecidual , Testes de Toxicidade Aguda
18.
Hum Pathol ; 39(1): 87-95, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17949781

RESUMO

The aim of this study was to analyze the expression and clinical role of DJ-1, a negative regulator of PTEN (phosphatase and tensin homolog deleted on chromosome 10), in ovarian carcinoma, and investigate the putative association between DJ-1 levels and expression of its transcriptional regulators specificity protein 1 (Sp1) and specificity protein 3 (Sp3). Effusions (n = 72) and solid tumors (n = 57, 42 primary and 15 metastases) were analyzed for DJ-1 messenger RNA (mRNA) expression using reverse transcriptase-polymerase chain reaction. Most specimens (48 effusions, 50 solid tumors) were additionally analyzed for Sp1 and Sp3 mRNA expression. PTEN protein expression was analyzed in 201 effusions and 92 solid tumors using immunohistochemistry. DJ-1 mRNA was expressed in more than 80% of specimens, with no preferential anatomical site. DJ-1 expression was positively associated with Sp1 expression in effusions (P = .03) and with Sp1 (P = .02) and Sp3 (P = .002) expression in solid tumors. In effusions, DJ-1 expression was higher in postchemotherapy compared with prechemotherapy specimens (P = .012). Higher DJ-1 levels (P = .027) and more advanced FIGO stage (IV versus III; P = .003) correlated with shorter progression-free survival in univariate analysis for patients with postchemotherapy effusions. PTEN expression was low in effusions and solid tumors (23% and 13%, respectively), and its expression showed no association with DJ-1 levels or survival. Our data show that DJ-1 is frequently expressed in advanced-stage ovarian carcinoma at all anatomical sites and is coexpressed with its transcriptional regulators Sp1 and Sp3. In contrast, PTEN expression is infrequent in this disease. These findings may provide one of the molecular mechanisms that mediate cancer cell survival and aggressiveness in this tumor.


Assuntos
Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Oncogênicas/fisiologia , PTEN Fosfo-Hidrolase/genética , Adulto , Idoso , Líquido Ascítico/química , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pessoa de Meia-Idade , Proteínas Oncogênicas/metabolismo , Neoplasias Ovarianas , Derrame Pleural Maligno/química , Proteína Desglicase DJ-1 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo
19.
Lung Cancer ; 54(3): 309-17, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16996643

RESUMO

Snail, Slug and Sip1 regulate cadherin and protease expression and mediate epithelial-mesenchymal transition in cancer. We analyzed the expression of cadherins and matrix metalloproteinases (MMP) and their transcriptional regulators in malignant mesothelioma (MM). One hundred and ten MM specimens (86 solid, 24 effusions) and 10 non-malignant effusions with reactive mesothelial cells (RMC) were analyzed for E-cadherin, N-cadherin and P-cadherin protein expression using immunhistochemistry. MM effusions were further analyzed for expression of Snail, Slug, Sip1, E-cadherin, MMP-2, MMP-9, MT1-MMP (MMP-14) and the MMP inhibitor TIMP-2, and for MMP-2 and MMP-9 activity using RT-PCR, Western blotting, immunhistochemistry and zymography. Results were analyzed for relationship with specimen type (biopsy versus effusion) and anatomic site (pleural versus peritoneal). E-cadherin, N-cadherin and P-cadherin expression was found in 69/110 (63%), 87/110 (79%) and 84/110 (76%) MM cases, respectively. Pleural and peritoneal MM showed comparable expression, but all three cadherins were upregulated in effusions compared to solid tumors (p<0.001). RMC were uniformly negative for E-cadherin and N-cadherin, and showed P-cadherin expression in 7/10 specimens. Immunohistochemistry localized MMP-2, MMP-9 and TIMP-2 to MM cells in 11/15, 14/15 and 8/15 effusions, respectively. RT-PCR showed direct association between MMP-2 mRNA expression level and the levels of MT1-MMP (p=0.027) and TIMP-2 (p=0.011). Snail protein expression showed positive association with MT1-MMP (p=0.016) and TIMP-2 (p=0.02) mRNA expression, but its expression was unrelated to MMP-2 and MMP-9 expression or activity. Snail, Slug and Sip1 levels did not show inverse association with E-cadherin levels. Our data show that E-cadherin and N-cadherin are selectively expressed in malignant mesothelial cells, and that P-cadherin and N-cadherin are expressed with similar frequency in MM. In agreement with our earlier data for ovarian carcinoma, cadherin expression is upregulated in effusions compared to solid lesions. The increased E-cadherin expression in effusions may be related to lack of negative regulation at the epigenetic level. The relationship between Snail and MMP in MM is uncertain at present.


Assuntos
Caderinas/metabolismo , Metaloproteinases da Matriz/metabolismo , Mesotelioma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neoplasias Pleurais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Caderinas/análise , Caderinas/genética , Feminino , Humanos , Imuno-Histoquímica , Masculino , Metaloproteinases da Matriz/análise , Metaloproteinases da Matriz/genética , Mesotelioma/química , Mesotelioma/patologia , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Derrame Pleural Maligno/química , Derrame Pleural Maligno/metabolismo , Derrame Pleural Maligno/patologia , Neoplasias Pleurais/química , Neoplasias Pleurais/patologia , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Inibidor Tecidual de Metaloproteinase-2/análise , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/genética
20.
Clin Cancer Res ; 11(10): 3925-9, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15897594

RESUMO

The spread of malignant tumor cells from a primary neoplasm to distant organs where they multiply and form new foci is the major cause of death from cancer. Despite the different modalities of cancer treatment, no effective curative therapy of metastatic lesions is available. To possess metastatic potential, a cell has to be able to invade the surrounding tissue, spread via lymphatics and/or the bloodstream, extravasate, and multiply at secondary sites. There is increasing evidence for a positive correlation between matrix metalloproteinase-2 (MMP-2) activity and tumor cell invasion. Agents blocking MMP-2 have been shown to prevent tumor cell invasion in vitro and in vivo. Inhibition of MMPs has, therefore, become the focus of considerable interest in connection with a variety of potential therapeutic applications. We have discovered a nontoxic MMP-2-selective inhibitor effective at nanomolar range on recombinant MMP. This compound, cyclopentylcarbamoylphosphonic acid, significantly inhibited cellular invasion and capillary formation in vitro. Further, i.p. or oral administration of the compound significantly reduced lung metastasis formation and s.c. tumor growth in a murine melanoma model. The effect of this novel compound on lung colonization, capillary formation, and s.c. tumor growth indicates that the compound might also be effective in treatment of primary tumor growth in reduction, or at least in prevention, of further tumor growth, thereby reducing the tumor burden of the patient by a nontoxic approach.


Assuntos
Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Inibidores de Metaloproteinases de Matriz , Melanoma/patologia , Neovascularização Patológica , Organofosfonatos/farmacologia , Animais , Quimiotaxia , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Metástase Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA