Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3687, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344473

RESUMO

Controlling optical fields on the subwavelength scale is at the core of nanophotonics. Laser-driven nanophotonic particle accelerators promise a compact alternative to conventional radiofrequency-based accelerators. Efficient electron acceleration in nanophotonic devices critically depends on achieving nanometer control of the internal optical nearfield. However, these nearfields have so far been inaccessible due to the complexity of the devices and their geometrical constraints, hampering the design of future nanophotonic accelerators. Here we image the field distribution inside a nanophotonic accelerator, for which we developed a technique for frequency-tunable deep-subwavelength resolution of nearfields based on photon-induced nearfield electron-microscopy. Our experiments, complemented by 3D simulations, unveil surprising deviations in two leading nanophotonic accelerator designs, showing complex field distributions related to intricate 3D features in the device and its fabrication tolerances. We envision an extension of our method for full 3D field tomography, which is key for the future design of highly efficient nanophotonic devices.

2.
Nat Nanotechnol ; 18(3): 257-263, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36702953

RESUMO

Combining highly coherent spin control with efficient light-matter coupling offers great opportunities for quantum communication and computing. Optically active semiconductor quantum dots have unparalleled photonic properties but also modest spin coherence limited by their resident nuclei. The nuclear inhomogeneity has thus far bound all dynamical decoupling measurements to a few microseconds. Here, we eliminate this inhomogeneity using lattice-matched GaAs-AlGaAs quantum dot devices and demonstrate dynamical decoupling of the electron spin qubit beyond 0.113(3) ms. Leveraging the 99.30(5)% visibility of our optical π-pulse gates, we use up to Nπ = 81 decoupling pulses and find a coherence time scaling of [Formula: see text]. This scaling manifests an ideal refocusing of strong interactions between the electron and the nuclear spin ensemble, free of extrinsic noise, which holds the promise of lifetime-limited spin coherence. Our findings demonstrate that the most punishing material science challenge for such quantum dot devices has a remedy and constitute the basis for highly coherent spin-photon interfaces.

3.
ACS Photonics ; 9(4): 1143-1149, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35480494

RESUMO

THz radiation finds various applications in science and technology. Pump-probe experiments at free-electron lasers typically rely on THz radiation generated by optical rectification of ultrafast laser pulses in electro-optic crystals. A compact and cost-efficient alternative is offered by the Smith-Purcell effect: a charged particle beam passes a periodic structure and generates synchronous radiation. Here, we employ the technique of photonic inverse design to optimize a structure for Smith-Purcell radiation at a single wavelength from ultrarelativistic electrons. The resulting design is highly resonant and emits narrowbandly. Experiments with a 3D-printed model for a wavelength of 900 µm show coherent enhancement. The versatility of inverse design offers a simple adaption of the structure to other electron energies or radiation wavelengths. This approach could advance beam-based THz generation for a wide range of applications.

4.
Science ; 373(6561): eabj7128, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34446445

RESUMO

The interaction between free electrons and light stands at the base of both classical and quantum physics, with applications in free-electron acceleration, radiation sources, and electron microscopy. Yet to this day, all experiments involving free-electron­light interactions are fully explained by describing the light as a classical wave. We observed quantum statistics effects of photons on free-electron­light interactions. We demonstrate interactions that pass continuously from Poissonian to super-Poissonian and up to thermal statistics, revealing a transition from quantum walk to classical random walk on the free-electron energy ladder. The electron walker serves as the probe in nondestructive quantum detection, measuring the second-order photon-correlation g(2)(0) and higher-orders g(n)(0). Unlike conventional quantum-optical detectors, the electron can perform both quantum weak measurements and projective measurements by evolving into an entangled joint state with the photons. These findings inspire hitherto inaccessible concepts in quantum optics, including free-electron­based ultrafast quantum tomography of light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA