Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 133(4): 043201, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39121425

RESUMO

Efficient helicity transfer from Poincaré fields to electrons of hydrogenic ions is revealed for the first time by four-dimensional relativistic simulations. The magnetic multipole class of Poincaré fields is chosen due to its fundamental role in light-matter spin coupling, and the calculation is demonstrated for Ne^{9+} ion irradiated by single and multimode x-ray pulses. Photoelectrons of both helicities emerge synchronously from the ion ensemble, and their directionality is controllable through the radiation mode numbers. The helicity density distributions display novel structures composed of jets, spirals, and rings, among others, that are unique to the combination of atomic and field parameters. Our approach to generate spin-polarized leptons using Poincaré fields may provide a new platform for helicity characterization based on advanced numerical capabilities.

2.
Opt Express ; 30(26): 46944-46955, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558633

RESUMO

Stimulated Raman scattering is ubiquitous in many high-intensity laser environments. Parametric four-wave mixing between the pump and Raman sidebands can affect the Raman gain, but stringent phase matching requirements and strongly nonlinear dynamics obscure clear understanding of its effects at high laser powers. Here we investigate four-wave mixing in the presence of strong self-focusing and weak ionization at laser powers above the Kerr critical power. Theoretical analysis shows that the plasma generated at focus naturally leads to phase matching conditions suitable for enhanced Raman gain, almost without regard to the initial phase mismatch. Multidimensional nonlinear optical simulations with multiphoton and collisional ionization confirm the enhancement and suggest that it may lead to significantly higher Raman losses in some high-intensity laser environments.

3.
Opt Lett ; 45(15): 4344-4347, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735294

RESUMO

Meter-scale nonlinear propagation of a picosecond ultraviolet laser beam in water, sufficiently intense to cause stimulated Raman scattering (SRS), nonlinear focusing, pump-Stokes nonlinear coupling, and photoexcitation, was characterized in experiments and simulations. Pump and SRS Stokes pulse energies were measured, and pump beam profiles were imaged at propagation distances up to 100 cm for a range of laser power below and above self-focusing critical power. Simulations with conduction band excitation energy UCB=9.5eV, effective electron mass meff=0.2me, Kerr nonlinear refractive index n2=5×10-16cm2/W, and index contribution due to SRS susceptibility n2r=1.7×10-16cm2/W produced the best agreement with experimental data.

4.
Appl Opt ; 54(31): F201-9, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26560609

RESUMO

In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

5.
Appl Opt ; 48(36): 6990-9, 2009 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-20029602

RESUMO

The absorption and scattering of oceanic aerosols are characterized using low- and high-power lasers in the near IR (1.064 microm). The imaginary part of the refractive index of sea salt inferred from low-power absorption measurements is 200x less than the commonly accepted value from the literature. The measured absorption coefficients of natural and artificial saltwater are within 5% of the absorption of pure water (0.14 cm(-1)). High-power aerosol experiments are consistent with low-power liquid absorption measurements, which yield comparable absorption coefficients for pure water and saltwater. High-power illumination of test aerosols (CuSO(4).5H(2)O) with an absorption coefficient alpha > or = 0.19 cm(-1) and a dwell time of 100 ms results in a consistent reduction in scattering from the aerosol column. The high-power laser scattering measurements are in good agreement with the theory, which accounts for the absorption, heating, and vaporization of the water-based aerosols. The measured absorption of oceanic aerosols in the laboratory is much less than the literature values at 1.064 microm and should result in reduced heating and thermal blooming in open ocean atmospheres.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(2 Pt 2): 026407, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20365665

RESUMO

We analyze the generation of terahertz radiation when an intense, short laser pulse is mixed with its frequency-doubled counterpart in plasma. The nonlinear coupling of the fundamental and the frequency-doubled laser pulses in plasma is shown to be characterized by a third order susceptibility which has a time dependence characteristic of the laser pulse durations. The terahertz generation process depends on the relative polarizations of the lasers and the terahertz frequency is omega approximately 1/tau(L), where tau(L) is the laser pulse duration. Since the laser pulse duration is typically in the picosecond or subpicosecond regime the resulting radiation is in the terahertz or multiterahertz regime. To obtain the third order susceptibility we solve the plasma fluid equations correct to third order in the laser fields, including both the relativistic and ponderomotive force terms. The relativistic and ponderomotive contributions to the susceptibility nearly cancel in the absence of electron collisions. Therefore, in this terahertz generation mechanism collisional effects play a critical role. Consistent with recent experimental observations, our model shows that (1) the terahertz field amplitude is proportional to I(1) square root I(2), where I(1) and I(2) are the intensities of the fundamental and second harmonic laser pulses, respectively, (2) the terahertz emission is maximized when the polarization of the laser beams and the terahertz are aligned, (3) for typical experimental parameters, the emitted terahertz field amplitude is on the order of tens of kilovolts/cm with duration comparable to that of the drive laser pulses, and (4) the direction of terahertz emission depends sensitively on experimental parameters.


Assuntos
Lasers , Cor , Elétrons , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA