Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 92(1): 628-633, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31801022

RESUMO

Technological advances in mass spectrometry (MS) toward more accurate and faster data acquisition result in highly informative but also more complex data sets. Especially the hyphenation of liquid chromatography (LC) and MS yields large data files containing a high amount of compound specific information. Using electrospray-ionization for compounds such as polymers enables highly sensitive detection, yet results in very complex spectra, containing multiply charged ions and adducts. Recent years have seen the development of novel or updated data mining strategies to reduce the MS spectra complexity and to ultimately simplify the data analysis workflow. Among other techniques, the Kendrick mass defect analysis, which graphically highlights compounds containing a given repeating unit, has been revitalized with applications in multiple fields of study, such as lipids and polymers. Especially for the latter, various data mining concepts have been developed, which extend regular Kendrick mass defect analysis to multiply charged ion series. The aim of this work is to collect and subsequently implement these concepts in one of the most popular open-source MS data mining software, i.e., MZmine 2, to make them rapidly available for different MS based measurement techniques and various vendor formats, with a special focus on hyphenated techniques such as LC-MS. In combination with already existing data mining modules, an example data set was processed and simplified, enabling an ever faster evaluation and polymer characterization.

2.
Rapid Commun Mass Spectrom ; 32(13): 1092-1098, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29660193

RESUMO

RATIONALE: The potential of an atmospheric pressure ionization source based on a dielectric barrier discharge in helium for the hyphenation of gas chromatography and mass spectrometry (GC/DBDI-MS) has been demonstrated only recently and for a limited range of compounds. Due to its 'soft' ionization properties and the possibility to choose from a variety of atmospheric pressure ionization MS instruments, GC/DBDI-MS has the potential to be an interesting alternative to 'classic' GC/MS techniques. METHODS: The hyphenation of GC with DBDI-MS at atmospheric pressure is used for the determination of semifluorinated n-alkanes in ski wax samples. RESULTS: Different to perfluorinated n-alkanes, which are typically detected as [M - F + O]- and [M - F]- , semifluorinated n-alkanes can be detected both in positive mode as [M - 3H + nO]+ and [M - H + nO]+ (n = 0, 1, 2, and 3) ions, as well as in negative mode as a fragment ion representing the fluorinated part of the respective semifluorinated n-alkane. The method allowed the sensitive detection of semifluorinated n-alkanes with achievable limits of detection (LODs) in the single digit pg range injected on column. To examine the applicability of the GC/DBDI-MS method, semifluorinated n-alkanes were determined in fluorinated ski waxes. Results were confirmed by complimentary GC/electron ionization MS measurements. CONCLUSIONS: The unique SFA ionization patterns serve for complementary unambiguous identification of semifluorinated n-alkane species in positive mode and screening of contained n-alkanes fluorinated chain lengths in negative mode.

3.
Anal Bioanal Chem ; 410(20): 4905-4911, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29802433

RESUMO

Serum vitamin D metabolite levels are of interest as biomarkers for vitamin D status, which has influence on numerous body functions and pathologies. The determination of vitamin D metabolite levels by liquid chromatography/mass spectrometry (LC/MS) is challenging due to their low concentrations and relatively low ionization efficiencies. Three ionization sources, dielectric barrier discharge ionization (DBDI), atmospheric pressure chemical ionization (APCI), and electrospray ionization (ESI), were compared regarding achievable limits of detection and occurring matrix effects. The latter were mainly caused by phospholipids. Therefore, in addition to a conventional solid phase extraction (SPE) stationary phase, a material for selective removal of phospholipids was examined. The selective removal of phospholipids significantly reduced observed matrix effects, especially when ESI was applied. Achievable limits of detection and observed matrix effects were lowest for APCI and with some limitations, also for DBDI. Graphical abstract.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Vitamina D/sangue , Vitamina D/metabolismo , Pressão Atmosférica , Humanos , Limite de Detecção , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Vitamina D/análogos & derivados , Vitamina D/análise
4.
Anal Chem ; 89(7): 4210-4215, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28253619

RESUMO

Dielectric barrier discharge ionization-mass spectrometry (DBDI-MS), which is based on the use of a low temperature helium plasma as ionization source, is used for the determination of trace amounts of triacetone triperoxide (TATP) and its homologue diacetone diperoxide (DADP) from surfaces. TATP is observed as [M+NH4]+ adduct, whereas DADP is observed as [M+O+NH4]+. Measurement of DADP with varying deuteration degrees (DADP, DADP-d6, and DADP-d12) indicates that DADP undergoes oxidation when ionized by DBDI. If acetonitrile is used as deposition solvent, TATP tends to show fragmentation and is not only detected as [M+NH4]+ but as [M-CH4+NH4]+ and [M-C2H4+NH4]+ as well. Quantification of TATP solutions from glass surfaces by DBDI-MS, using TATP-3,6,9-13C as internal standard, was done and validated using an LC/APCI-MS method. Achievable limits of detection (LOD) for TATP are equivalent to the deposition of 15 ng TATP and are comparable with other ambient desorption/ionization mass spectrometric techniques like desorption electrospray ionization (DESI).

5.
J Am Soc Mass Spectrom ; 30(9): 1742-1749, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31140078

RESUMO

Microdroplet fusion chemistry is an emerging area of analyte manipulation that utilizes the ion source region of a mass spectrometer to covalently derivatize or manipulate the charge state distribution. This technique utilizes two electrospray emitters in close proximity, where the droplets from each electrospray plume fuse and undergo the subsequent chemistry. In this study, microdroplet fusion chemistry via bipolar dual spray has demonstrated the ability to reduce the average charge state of polyethylene glycol (PEG) cations using anionic reagents. Bipolar dual spray was implemented on a commercial mass spectrometer with limited hardware modifications to the ion source. Reagents including ammonium hydroxide, formic acid, and lithium chloride showed dramatic shifts in the average charge state of PEG 3.8 K cations (e.g., 5.0+ to 2.5+) along with the emergence of newly detected charge states. An organic base, tributylamine, had no effect on the charge state distribution of PEG 3.8 K cations. These results were consistent with an ion-pairing mechanism, where reagent anions destabilized ammonium cation interactions with PEG 3.8 K upon droplet fusion from the negative and positive emitters. Additional bipolar dual spray experiments with PEG 12.6 K demonstrated the ability to transform uninterpretable mass information into distinct charge states ranging from [M+8NH4]+ to [M+3NH4]+. Overall, this study provides insight into the nature of dual spray chemistry and will aid future experimental design in microdroplet covalent chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA