Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Biotechnol Lett ; 44(2): 333-340, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35182262

RESUMO

OBJECTIVE: Unlike plant cell suspension culture, the proliferation of callus in bioreactors has received inadequate attention. The magnificent potential of plant callus becomes more appreciated as the research unfolds and promises interesting applications including the production of valuable metabolites, therapeutic antibodies, bioactive extracts with regenerating effects, and the generation of genetically improved plants. Issues such as the lack of 3D-access of the cells to the nutrients, using an interfering gelling substance as the support matrix, and the changes in the medium formulation during the growth phase were discouraging factors for extending research on this topic. Considering the existing drawbacks, a novel open-flow spray bioreactor (OFSB) was configured to circumvent the associated problems with the solid cell culture and promote the applicability of plant callus culture via improving the feeding strategy. METHODS: Applying similar subculture conditions, the proliferation of Arnebia pulchra and Hyoscyamus niger calli as the examples of two important plant families (Boraginaceae and Solanaceae) was studied in the OFSB in comparison with similar calli that grew in Petri dishes and jars. RESULTS: A. pulchra and H. niger calli obtained the weight gains of (%87.3 and %106.7) in the Petri dishes, (%208.7 and %226) in the jars, and (%288.6 and %320.0) in OFSB, respectively, while no significant changes were observed in the productivity indices of the examined calli. CONCLUSION: The simple design of OFSB bypasses most of the notorious problems associated with solid plant callus culture. OFSB technical features allow the bioreactor to be used for growth optimization of various types of plant calli in a cost-effective manner.


Assuntos
Boraginaceae , Hyoscyamus , Reatores Biológicos , Proliferação de Células , Meios de Cultura , Humanos
2.
Artigo em Inglês | MEDLINE | ID: mdl-34521302

RESUMO

The biodetoxification of cyanide-rich wastewater has been suggested as an appropriate technique due to its environmental friendliness and cost effectiveness. In this research, Enterobacter zs that was newly isolated from cyanide-polluted wastewater was selected to catalyze cyanide via an enzymatic mechanism. Enzyme was purified and its activity was also determined by ammonia assay. Subsequently, the operational procedure was optimized to enhance cyanide biodegradation at variable pH values, temperatures and cyanide concentrations using response surface methodology (RSM). The results revealed that the interactions between pH and temperature, as well as those between pH and cyanide concentration, were significant, and the concentration of cyanide in a 650 mg.L-1 solution was decreased by 73%. According to this study, it can be proposed that due to its higher activity level compared with those of similar enzymes, this enzyme can prove useful in enzymatic biodegradation of cyanide which is a promising approach in the treatment of industrial effluent.


Assuntos
Cianetos , Poluentes Químicos da Água , Amônia , Biodegradação Ambiental , Dióxido de Carbono , Enterobacter
3.
Extremophiles ; 22(2): 315-326, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29330650

RESUMO

Endoglucanases are important enzymes in plant biomass degradation. They have current and potential applications in various industrial sectors including human and animal food processing, textile, paper, and renewable biofuel production. It is assumed that the cold-active endoglucanases, with high catalytic rates in moderate and cold temperatures, can improve the cost-effectiveness of industrial processes by lowering the need for heating and, thus, energy consumption. In this study, the endoglucanase CelCM3 was procured from a camel rumen metagenome via gene cloning and expression in Escherichia coli BL21 (DE3). The maximum activity of the enzyme on carboxymethyl cellulose (CMC) was obtained at pH 5 and 30 °C with a Vmax and Km of 339 U/mg and 2.57 mg/ml, respectively. The enzyme with an estimated low melting temperature of 45 °C and about 50% activity at 4 °C was identified to be cold-adapted. A thermodynamic analysis corroborated that CelCM3 with an activation energy (Ea), enthalpy of activation (ΔH), and Gibb's free energy (ΔG) of, respectively, 18.47 kJ mol-1, 16.12 kJ mol-1, and 56.09 kJ mol-1 is a cold-active endoglucanase. In addition, CelCM3 was tolerant of metal ions, non-ionic detergents, urea, and organic solvents. Given these interesting characteristics, CelCM3 shows promise to meet the requirements of industrial applications.


Assuntos
Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Temperatura Baixa , Adaptação Fisiológica , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Camelus/microbiologia , Carboximetilcelulose Sódica/metabolismo , Celulase/química , Celulase/genética , Estabilidade Enzimática , Metagenoma , Desnaturação Proteica , Rúmen/microbiologia
4.
Ecotoxicol Environ Saf ; 164: 455-466, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30144706

RESUMO

An efficient phenol-degrading bacterial strain, belonging to Acinetobacter genus, was isolated and selected to study the impact of different environmentally relevant phenol concentrations on the degradation process. The bacterial isolate, labeled as Acinetobacter sp. SA01 was able to degrade the maximum phenol concentration of 1 g/l during 60 h at optimum condition of pH 7, 30 °C and 180 rpm. Aeration and initial cell density, the two important factors, were carefully examined in the optimal growth conditions. The results showed that these two variables related proportionally with phenol degradation rate. Further investigations showed no effect of inoculum size on the enhancement of degradation of phenol at over 1 g/l. Flow cytometry (FCM) study was performed to find out the relationship between phenol-induced damages and phenol degradation process. Single staining using propidium iodide (PI) showed increased cell membrane permeability with an increase of phenol concentration, while single staining with carboxyfluorescein diacetate (cFDA) demonstrated a considerable reduction in esterase activity of the cells treated with phenol at more than 1 g/l. A detailed investigation of cellular viability using concurrent double staining of cFDA/PI revealed that the cell death increases in cells exposed to phenol at more than 1 g/l. The rate of cell death was low but noticeable in the presence of phenol concentration of 2 g/l, over time. Phenol at concentrations of 3 and 4 g/l caused strong toxicity in living cells of Acinetobacter sp. SA01. The plate count method and microscopy analysis of the cells treated with phenol at 1.5 and 2 g/l confirmed an apparent reduction in cell number over time. It was assumed that the phenol concentrations higher than 1 g/l have destructive effects on membrane integrity of Acinetobacter sp. SA01. Our results also revealed that the toxicity did not reduce by increasing initial cell density. Scanning electron microscopy (SEM) examination of bacterial cells revealed the surface morphological changes following exposure to phenol. The bacterial cells, with wizened appearance and wrinkled surface, were observed by exposing to phenol (1 g/l) at lag phase. A morphological change occurred in the mid-logarithmic phase as the bacterial cells demonstrated coccobacilli form as well as elongated filamentous shape. The wrinkled cell surface were totally disappeared in mid-stationary phase, suggesting that the complete degradation of phenol relieve the stress and direct bacterial cells toward possessing smoother cell membrane.


Assuntos
Acinetobacter/metabolismo , Fenol/metabolismo , Acinetobacter/efeitos dos fármacos , Acinetobacter/isolamento & purificação , Acinetobacter/ultraestrutura , Biodegradação Ambiental , Membrana Celular/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Fenol/toxicidade
5.
J Enzyme Inhib Med Chem ; 31(6): 1162-9, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26526616

RESUMO

Peroxidases are ubiquitous enzymes that play an important role in living organisms. Current spectrophotometrically based peroxidase assay methods are based on the production of chromophoric substances at the end of the enzymatic reaction. The ambiguity regarding the formation and identity of the final chromophoric product and its possible reactions with other molecules have raised concerns about the accuracy of these methods. This can be of serious concern in inhibition studies. A novel spectrophotometric assay for peroxidase, based on direct measurement of a soluble aniline diazo substrate, is introduced. In addition to the routine assays, this method can be used in comprehensive kinetics studies. 4-[(4-Sulfophenyl)azo]aniline (λmax = 390 nm, ɛ = 32 880 M(-1) cm(-1) at pH 4.5 to 9) was introduced for routine assay of peroxidase. This compound is commercially available and is indexed as a food dye. Using this method, a detection limit of 0.05 nmol mL(-1) was achieved for peroxidase.


Assuntos
Compostos de Anilina/metabolismo , Compostos Azo/metabolismo , Peroxidase/metabolismo , Cinética , Análise Espectral/métodos , Especificidade por Substrato
6.
Biotechnol Appl Biochem ; 61(2): 118-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23826950

RESUMO

An amylase-producing psychrotroph bacterium was isolated from soil and identified as belonging to the genus Exiguobacterium. A novel cold-adapted α-amylase, Amy SH3, was purified from culture medium of this bacterium using acetone precipitation and DEAE-Sepharose anion-exchange chromatography. The molecular mass of the enzyme was estimated about 34 kDa using SDS-PAGE. Biochemical characterization of Amy SH3 revealed that the optimum temperature for maximum activity of Amy SH3 was 37°C. However, Amy SH3 was also active at cold temperatures, showing 13% and 39% activity at 0 and 10°C, respectively. The optimum pH for maximum activity of Amy SH3 was pH 7, whereas the amylase was active over a pH range of 5 to 10. The activity of Amy SH3 was enhanced by Co²âº but decreased by Mg²âº, Mn²âº, Zn²âº, Fe²âº, and Ca²âº. Amy SH3 was able to retain 76% of its activity in the presence of 0.5% SDS. The K(m) and V(max) of the enzyme were calculated to be 0.06 mg/mL and 4,010 U/mL, respectively. The cold-adapted Amy SH3 seems very promising for applications at ambient temperature.


Assuntos
Bacillales/enzimologia , alfa-Amilases/biossíntese , alfa-Amilases/química , alfa-Amilases/isolamento & purificação , Cromatografia por Troca Iônica , Meios de Cultura , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Temperatura , alfa-Amilases/genética
7.
Acta Biochim Biophys Sin (Shanghai) ; 45(10): 845-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23979812

RESUMO

Chitinases are slow-reacting but important enzymes as they are anticipated to have diverse applications. The role of a chitin-binding domain (ChBD) in enhancing the quality of binding is essential information for purposeful engineering of chitinases. The idea of making hybrid chitinases by fusing a known ChBD to a chitinase, which naturally lacks ChBD is of interest especially for bio-controlling purposes. Therefore, in the present study, the ChBD of Serratia marcescens chitinase B was selected and fused to the fungal chitinase, Trichoderma atroviride Chit42. Both Chit42 and chemric Chit42 (ChC) showed similar activity towards colloidal chitin with specificity constants of 0.83 and 1.07 min(-1), respectively, same optimum temperatures (40°C), and similar optimum pH (4 and 4.5, respectively). In the presence of insoluble chitin, ChC showed higher activity (70%) and obtained a remarkably higher binding constant (700 times). Spectroscopic studies indicated that chimerization of Chit42 caused some structural changes, which resulted in a reduction of α-helix in ChC structure. Chemical and thermal stability studies suggested that ChC had a more stable structure than Chit42. Hill analysis of the binding data revealed mixed-cooperativity with positive cooperativity governing at ChC concentrations below 0.5 and above 2 µM in the presence of insoluble chitin. It is suggested that the addition of the ChBD to Chit42 affords structural changes which enhance the binding ability of ChC to insoluble chitin, improving its catalytic efficiency and increasing its thermal and chemical stability.


Assuntos
Quitina/metabolismo , Quitinases/química , Quitinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Estabilidade Enzimática , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Serratia marcescens/enzimologia , Trichoderma/enzimologia
8.
AAPS PharmSciTech ; 14(1): 160-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255199

RESUMO

Anti-inflammatory effect of the alcoholic extracts of N. sativa seeds and its callus on mix glial cells of rat with regard to their thymoquinone (TQ) content was investigated. Callus induction was achieved for explants of young leaf, stem, petiole, and root of N. sativa on solid Murashige and Skoog (MS) medium containing 2,4-D (1 mg/l) and kinetin (2.15 mg/l). TQ content of the alcoholic extracts was measured by HPLC. Total phenols were determined using Folin-Ciocalteu method and antioxidant power was estimated using FRAP tests. The mix glial cells, inflamed by lipopolysaccharide, were subjected to anti-inflammatory studies in the presence of various amounts of TQ and the alcoholic extracts. Viability of the cells and nitric oxide production were measured by MTT and Griess reagent, respectively. The leaf callus obtained the highest growth rate (115.4 mg/day) on MS medium containing 2,4-D (0.22 mg/l) and kinetin (2.15 mg/l). Analyses confirmed that TQ content of the callus of leaf was 12 times higher than that measured in the seeds extract. However, it decreased as the calli aged. Decrease in the TQ content of the callus was accompanied with an increase in its phenolic content and antioxidant ability. Studies on the inflamed rat mix glial cells revealed significant reduction in the nitric oxide production in the presence of 0.2 to 1.6 mg/ml of callus extract and 1.25 to 20 µl/ml of the seed extracts. However, the extent of the effects is modified assumingly due to the presence of the other existing substances in the extracts.


Assuntos
Anti-Inflamatórios/farmacologia , Benzoquinonas/análise , Neuroglia/efeitos dos fármacos , Nigella sativa/química , Extratos Vegetais/farmacologia , Sementes/química , Animais , Anti-Inflamatórios/química , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cinética , Neuroglia/citologia , Nigella sativa/embriologia , Extratos Vegetais/química , Ratos , Ratos Wistar
9.
Artigo em Inglês | MEDLINE | ID: mdl-37587806

RESUMO

BACKGROUND: Plants that have therapeutic features for humans or animals are commonly referred to as "medicinal plants". They produce secondary metabolites with antioxidant, antimicrobial and/or anti-cancer effects. Lithospermum officinale, known as European stone seed, is a famous medicinal herb. However, due to the pyrrolizidine alkaloids (PzAl) in the root extract of L.officinal, there are therapeutic limitations to this herb. Objective This research was devoted to the evaluation of the anti-inflammatory capacity of methanolic extracts of L. officinale callus (LoE) (fresh cells) on rat microglial cells, the immune cells of the Central Nervous System, which play an essential role in the responses to neuroinflammation. METHODS: Primary microglia were obtained from neonatal Wistar rats (1 to 3-days old), and then treated with various concentration of CfA and methanolic extracts of 17 and 31-day-old L. officinale callus before LPS-stimulation. In addition to HPLC analysis of the extracts, viability, nitric oxide production, and evaluation of pro-inflammatory genes and cytokines in the inflamed microglia were investigated by MTT, Griess methos, qrt-PCR, and ELISA. RESULTS: Methanolic extract of the 17-day-old callus of L. officinale exhibited anti-inflammatory effects on LPS-stimulated microglial cells much higher than observed for CfA. The data were further supported by the decreased expression of Nos2, Tnf-α, and Cox-2 mRNA and the suppression of TNF-α and IL-1ß release in the activated microglial cells pretreated with the effective dose of LoE (0.8 mg mL-1). CONCLUSION: It was assumed that the better anti-neuroinflammatory performance of LoE than CfA in LPS-activated primary microglia could be a result of the synergism of the components of the extract and the lipophilic nature of RsA as the main phenolic acid of LoE. Considering that LoE shows a high antioxidant capacity and lacks PzAl, it is anticipated that LoE extract might be considered a reliable substitute to play a key role in the preparation of neuroprotective pharmaceutical formulas, which require in vivo research and further experiments.

10.
J Food Biochem ; 46(10): e14279, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35727699

RESUMO

Inhibition of tyrosinase activity can control fruit browning and preserve the flavor and nutritional value of food. The impacts of fulvic acid (FA) and humic acid (HA) on tyrosinase activity were investigated utilizing circular dichroism (CD) and fluorescence spectroscopy, molecular docking (MD), and molecular dynamics simulations. HA and FA demonstrated a mixed type of inhibition with Ki 2.02 and 5.2 µM, respectively. The thermodynamic parameters displayed that the hydrogen bond and hydrophobic force play a major role in the FA-tyrosinase and HA-tyrosinase interaction, respectively. Fluorescence experiments demonstrated changes in tyrosinase tertiary structures. HA could not destroy the tyrosinase secondary structure significantly, however, FA has a significant influence on the tyrosinase secondary structure. The molecular dynamics findings demonstrated the minimal fluctuations and the lowest flexibility in the complex amino acids in the HA-tyrosinase and FA-tyrosinase interaction. Altogether, HA and FA could be utilized in food industries as an accessible natural source for tyrosinase inhibition. PRACTICAL APPLICATIONS: Recently, the investigation of tyrosinase inhibitors from the biosphere for hindrance of undesired browning in the food industry has increased considerably. Mushroom tyrosinase is a suitable model for kinetic research owing to its availability as well as close conformational similarity to tyrosinase in a mammal. Natural sources and their effective compounds could have wonderful potential on tyrosinase activity and structure, thus, in this study, the interactions between tyrosinase and fulvic acid (FA) and Humic acid (HA) were investigated. Previously, it has been shown that HA and FA have antioxidant properties and they can improve the quality of food via retarding lipid oxidation. Altogether, further investigations are warranted to draw firm conclusions, HA and FA could be utilized in food industries not only as antioxidant agents but also as an accessible natural source for tyrosinase inhibition.


Assuntos
Substâncias Húmicas , Monofenol Mono-Oxigenase , Aminoácidos , Animais , Antioxidantes , Substâncias Húmicas/análise , Lipídeos , Mamíferos , Simulação de Acoplamento Molecular
11.
Sci Rep ; 12(1): 10301, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717508

RESUMO

Cellulases are hydrolytic enzymes with wide scientific and industrial applications. We described a novel cellulase, CelC307, from the thermophilic indigenous Cohnella sp. A01. The 3-D structure of the CelC307 was predicted by comparative modeling. Docking of CelC307 with specific inhibitors and molecular dynamic (MD) simulation revealed that these ligands bound in a non-competitive manner. The CelC307 protein was purified and characterized after recombinant expression in Escherichia coli (E. coli) BL21. Using CMC 1% as the substrate, the thermodynamic values were determined as Km 0.46 mM, kcat 104.30 × 10-3 (S-1), and kcat/Km 226.73 (M-1 S-1). The CelC307 was optimally active at 40 °C and pH 7.0. The culture condition was optimized for improved CelC307 expression using Plackett-Burman and Box-Behnken design as follows: temperature 20 °C, pH 7.5, and inoculation concentration with an OD600 = 1. The endoglucanase activity was positively modulated in the presence of Na+, Li+, Ca2+, 2-mercaptoethanol (2-ME), and glycerol. The thermodynamic parameters calculated for CelC307 confirmed its inherent thermostability. The characterized CelC307 may be a suitable candidate for various biotechnological applications.


Assuntos
Bacillales , Celulase , Celulases , Bacillales/metabolismo , Celulase/metabolismo , Celulases/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Íons , Temperatura
12.
Phytochemistry ; 194: 113022, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34826793

RESUMO

Demands for peroxidases (POX)s with diverse physicochemical properties have steadily grown as more applications of POXs are demonstrated. Plants are among the best sources of versatile POXs, and plant biotechnology, as an agricultural hassle-free technology, promises to circumvent the limitations of natural resource exploitation and to address the demands. Following this trend, it was shown that POX production steadily increased during the 31-day subculture of Alkanna frigida (from Boraginaceae) callus on Murashige-Skoog medium containing 2,4-dichlorophenoxyacetic acid (10-6 M) and kinetin (10-5 M). The purified cationic enzyme (POXalf) maintained its optimal activity over pH 4-7 for 2 years. It was resistant to H2O2 high concentrations (IC50 = 543.7 mM) and showed high specific activity in the reaction with phenol (4320.5 AU mg-1 > 20-fold of HRP AU). Furthermore, the specificity constant ratio of guaiacol to phenol indicated a 100 times faster reaction of POXalf with guaiacol. However, in contrast to HRP, it had little effect on diazo derivatives of aniline and meta-diaminobenzene. Based on the resulting primary structure from the tandem mass analysis, the POXalf 3D structure was constructed via homology modelling. Despite the high topological similarity between the HRP and POXalf structures, there were important differences between the active site pockets that could explain the observed differences in the corresponding substrate spectra and the specific activities. Considering the dynamics of POXalf production, its inactivity towards IAA and its high affinity for guaiacol, POXalf may have associated roles with A. frigida cell wall construction and monolignol metabolism.


Assuntos
Boraginaceae , Peroxidase , Técnicas de Cultura de Células , Peróxido de Hidrogênio , Peroxidases
13.
Anal Chem ; 83(11): 4200-5, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21545148

RESUMO

Laccase (EC 1.10.3.2) is a widespread cuproenzyme able to oxidize various types of phenols and similar aromatic compounds through a one-electron transfer mechanism. The enzyme has already found its way into the market as a biocatalyst. Because of its ability to be paired by electron mediators, the expectation for employing laccases in versatile processes is very high. There are a few spectrophotometric methods for assaying the laccase activity; however, all of them are based on the formation of product(s) resulting from the enzymatic and inevitable succeeding chemical reactions. Use of diazo derivatives of guaiacol (DdG) was developed as a new spectrophotometric method based on substrate depletion allowing direct assessment of enzyme activity has been introduced. This method allows accurate comprehensive kinetic studies of laccases and provides reliable information about the quality of docking of different substrates or one substrate to the active sites of different laccases. Using this method, the kinetic parameters of various DdG carrying different electron donating and withdrawing substituents were used to assay laccase from Neurospora crassa. 2-Methoxy-4-[(4-phenyl)azo]-phenol (K(m) = 93.5 µM and V = 1.98 µM/min) was identified as an appropriate substrate for the accurate and routine spectrophotometric based assay of laccases.


Assuntos
Guaiacol/química , Lacase/metabolismo , Espectrofotometria Ultravioleta/métodos , Compostos Azo/química , Domínio Catalítico , Ensaios Enzimáticos/métodos , Guaiacol/metabolismo , Cinética , Neurospora crassa/enzimologia , Oxirredução , Especificidade por Substrato
14.
Biotechnol Appl Biochem ; 58(6): 456-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22172108

RESUMO

Arnebia euchroma callus, obtained from the root cell culture of an Iranian native specimen, has gained a doubling time of 63 H after regular subculturing on Linsmaier-Skoog (LS) medium containing sugar (50 g/L), 2,4-dichlorophenoxyacetic acid (10(-6) M), and kinetin (10(-5) M) under darkness at 25°C. Despite the observed somaclonal variations, peroxidase production by the A. euchroma calli has been stable over 4 years under the aforementioned conditions. Isoelectric focusing experiments revealed that the partially purified A. euchroma peroxidases (AePoxs) are mainly anionic with pI values of about 5.5 and 6.6. AePox reaches its optimal activity at 55°C and pH 7.5. Results of the various kinetic studies suggest that AePox belongs to the type III plant peroxidases with no activity for the oxidation of 3-indoleacetic acid, but seems to play a role in the lignin biosynthesis and H(2) O(2) regulation during the proliferation of the A. euchroma cells on LS medium. Comparing the biochemical properties of AePox with horseradish peroxidase and in view of the ease of solid cell culture, the A. euchroma callus could be considered as a source of plant peroxidase for some biotechnological applications.


Assuntos
Boraginaceae/metabolismo , Peroxidases/química , Peroxidases/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Técnicas de Cultura de Células , Precipitação Química , Meios de Cultura , Estabilidade Enzimática , Focalização Isoelétrica , Cinética , Cinetina/metabolismo , Peroxidases/isolamento & purificação , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo
15.
J Food Biochem ; 45(11): e13949, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34558084

RESUMO

To prevent enzymatic browning, applying a polyphenol oxidase (PPO) inhibitor is more desirable, especially when the freshness of the product matters. Most of the inhibition studies were done on mushroom tyrosinase (MT) while the literature indicates that MT and PPO of Solanum tuberosum (PPOsol ) respond differently to the same modulator despite their similar active sites. This research was conducted to deepen our knowledge about PPOsol and introduce a more specific inhibitor for this enzyme to be used in controlling the enzymatic browning of potatoes. A modified procedure was developed for PPOsol purification. The enzyme was subjected to some essential physicochemical and kinetics studies. In parallel to the comparable physicochemical properties, homology modeling revealed high structural similarity between Solanum lycopersicum PPO (PPOsly ) and PPOsol except for their active site pockets. Accordingly, PPOsol showed 5.1- and 34-fold higher affinity toward chlorogenic acid compared with two PPOsly isozymes. Alike PPOsly , PPOsol showed monophenolase activity but it was inactive toward L-tyrosine and p-coumaric acid. Based on structural criteria, phthalic acid, cinnamic acid, ferulic acid, and vanillin were selected and thoroughly examined for inhibition of the catecholase activity of PPOsol . Although all these substances inhibited PPOsol in mixed-inhibition mode, the results were strongly in favor of vanillin with IC50 < 1.37 mM and Ki < 1.2 mM. PRACTICAL APPLICATIONS: There are subtle structural differences in the active site pockets of polyphenol oxidase (PPOs) of various fruits, vegetables, and crops. Consequently, to introduce an efficient inhibitor for hindering enzymatic browning of crop products, it is essential to have detailed knowledge about the structure and activity of its PPO as the main player of this undesirable phenomenon. Results of this study not only shed light on the physicochemical properties of PPOsol but can also be used in making various formulations for safe controlling enzymatic browning of potatoes, especially fresh-cut and minimally processed products, and similar crops products during postharvest and the processes of products preparations.


Assuntos
Solanum lycopersicum , Solanum tuberosum , Catecol Oxidase
16.
Int J Biol Macromol ; 187: 373-385, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34329665

RESUMO

Superoxide dismutases (SODs) (EC 1.15.1.1) are well known antioxidant enzymes that play critical roles in cellular defenses of living organisms against harmful superoxide radicals during oxidative stress. This study details on cloning, biochemical and functional characterization of an iron containing type superoxide dismutase (SOD) from a novel thermophilic bacteria Cohnella sp. A01 (CaSOD). The secondary and three dimensional structure of the protein were predicted. CaSOD gene was subsequently cloned into pET-26b(+) expression vector and expression of the recombinant protein (rCaSOD) was optimized in E. coli BL21 (DE3) and the purified recombinant SOD showed a single band with an apparent molecular weight of 26 kDa by SDS-PAGE. The half-life and thermodynamic parameters including ΔH⁎, ΔS⁎, and ΔG⁎ were 187 min at 60 °C, 7.3 kJ.mol-1, -76.8 kJ.mol-1.°K-1, and 84.1 kJ.mol-1, respectively. The rCaSOD exhibited catalytic activity in a very broad range of pH (6.0-10.0) and temperatures (35-75 °C), as well as stability in a broad pH range, from 3.0 to 11.0, and wide range of temperature, different concentrations of detergent agents, metal ions, organic solvents and other chemicals. The results suggest that this novel enzyme could be used for various industrial applications in cosmetic, food, and pharmaceutical industries.


Assuntos
Bacillales/enzimologia , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Sequência de Aminoácidos , Bacillales/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Clonagem Molecular , Estabilidade Enzimática , Peróxido de Hidrogênio/metabolismo , Concentração de Íons de Hidrogênio , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Superóxido Dismutase/química , Superóxido Dismutase/genética , Temperatura
17.
Protein J ; 40(5): 689-698, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34047882

RESUMO

As a safe substitute for hydroquinone, ß-arbutin, a natural plant substance, and its synthetic counterpart, α-arbutin, are used in depigmentation formulations. However, there are debatable points regarding the impact of arbutin on tyrosinase and the pigmentation process. To shed light on this issue, the effects of Pyrus biossieriana leaves extract (PbLE) and ß-arbutin, extracted from PbLE, on mushroom tyrosinase (MT) were comprehensively examined. The study was focused on cresolase activity as the characteristic reaction of a tyrosinase. Kinetics studies disclosed that ß-arbutin can modulate MT monophenolase activity from inhibition to activation or vice versa. ß-Arbutin inhibited L-tyrosine (LTy) oxidation at concentrations < 0.3 mM but it increased (more than 400%) the enzymatic oxidation of L-tyrosine at the concentrations > 0.3 mM. An opposite pattern (activation then inhibition) was observed when a synthetic substrate was used instead of LTy. Computational studies, focused on the heavy chain of MT, indicated that ß-arbutin effect could be overruled by the enzyme's ability to provide the ligand with a non-specific binding site (MTPc). A plausible mechanism was presented to show the influence of MTPc on the substrate pose in the active site. The possible determinant correlation between the findings of this research and the current studies on human tyrosinase role in the pigmentation process has been presented.


Assuntos
Agaricales/enzimologia , Arbutina/química , Proteínas Fúngicas/química , Monofenol Mono-Oxigenase/química , Folhas de Planta/química , Pyrus/química
18.
mSystems ; 6(1)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436517

RESUMO

An outer membrane protein A (OmpA) from Acinetobacter sp. strain SA01 was identified and characterized in-depth based on the structural and functional characteristics already known of its homologues. In silico structural studies showed that this protein can be a slow porin, binds to peptidoglycan, and exhibits emulsifying properties. Characterization of the recombinant SA01-OmpA, based on its emulsifying properties, represented its promising potentials in biotechnology. Also, the presence of SA01-OmpA in outer membrane vesicles (OMV) and biofilm showed that this protein, like its homologues in Acinetobacter baumannii, can be secreted into the extracellular environment through OMVs and play a role in the formation of biofilm. After ensuring the correct selection of the protein of interest, the role of oxidative stress induced by cell nutritional parameters (utilization of specific carbon sources) on the expression level of OmpA was carefully studied. For this purpose, the oxidative stress level of SA01 cell cultures in the presence of three nonrelevant carbon sources (sodium acetate, ethanol, and phenol) was examined under each condition. High expression of SA01-OmpA in ethanol- and phenol-fed cells with higher levels of oxidative stress than acetate suggested that oxidative stress could be a substantial factor in the regulation of SA01-OmpA expression. The significant association of SA01-OmpA expression with the levels of oxidative stress induced by cadmium and H2O2, with oxidative stress-inducing properties and lack of nutritional value, confirmed that the cells tend to harness their capacities with a possible increase in OmpA production. Collectively, this study suggests a homeostasis role for OmpA in Acinetobacter sp. SA01 under oxidative stress besides assuming many other roles hitherto attributed to this protein.IMPORTANCE Acinetobacter OmpA is known as a multifaceted protein with multiple functions, including emulsifying properties. Bioemulsifiers are surface-active compounds that can disperse hydrophobic compounds in water and help increase the bioavailability of hydrophobic hydrocarbons to be used by degrading microorganisms. In this study, an OmpA from Acinetobacter sp. SA01 was identified and introduced as an emulsifier with a higher emulsifying capacity than Pseudomonas aeruginosa rhamnolipid. We also showed that the expression of this protein is not dependent on the nutritional requirements but is more influenced by the oxidative stress caused by stressors. This finding, along with the structural role of this protein as a slow porin or its role in OMV biogenesis and biofilm formation, suggests that this protein can play an important role in maintaining cellular homeostasis under oxidative stress conditions. Altogether, the present study provides a new perspective on the functional performance of Acinetobacter OmpA, which can be used both to optimize its production as an emulsifier and a target in the treatment of multidrug-resistant strains.

19.
Artigo em Inglês | MEDLINE | ID: mdl-33148153

RESUMO

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn by mutual agreement between the editors and the publisher.Bentham Science apologizes for any inconvenience this decision may have brought to the journal's readers.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php. Bentham Science Disclaimer: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

20.
Mol Biol Res Commun ; 9(1): 23-34, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32582790

RESUMO

In this study, hairy root induction in leaf and stem explants of Mentha spicata using various Agrobacterium rhizogenes strains was established for the first time. Although inoculation of explants by immersion method resulted in tissue necrosis, direct injection of explants by all examined strains (A13,R318,A4,GMI 9534 and ATCC15834) was effective. All different parts of the stem were susceptible to A. rhizogenes infection. However, the middle and lower internodes showed a higher rate of transformation. Among the different strains, the strain A13 exhibited the highest infection efficiency (almost 75% of the explants). A13 and R318-infected hairy roots showed the highest biomass production (close to 60 mg/flask), while infection with GMI 9534 produced the highest content of phenolic acids. Finally, the effect of phytohormone elicitation on hairy root growth and phenolic acid biosynthesis was investigated. A substantial increase in root growth and phenolic acids accumulation was obtained followed by 0.3 mg L-1 IBA and 100 µM MeJA treatment, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA