Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(5): e26638, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520365

RESUMO

Connectome spectrum electromagnetic tomography (CSET) combines diffusion MRI-derived structural connectivity data with well-established graph signal processing tools to solve the M/EEG inverse problem. Using simulated EEG signals from fMRI responses, and two EEG datasets on visual-evoked potentials, we provide evidence supporting that (i) CSET captures realistic neurophysiological patterns with better accuracy than state-of-the-art methods, (ii) CSET can reconstruct brain responses more accurately and with more robustness to intrinsic noise in the EEG signal. These results demonstrate that CSET offers high spatio-temporal accuracy, enabling neuroscientists to extend their research beyond the current limitations of low sampling frequency in functional MRI and the poor spatial resolution of M/EEG.


Assuntos
Conectoma , Humanos , Conectoma/métodos , Eletroencefalografia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Fenômenos Eletromagnéticos
2.
Neuroimage ; 280: 120337, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604296

RESUMO

Brain oscillations are produced by the coordinated activity of large groups of neurons and different rhythms are thought to reflect different modes of information processing. These modes, in turn, are known to occur at different spatial scales. Nevertheless, how these rhythms support different spatial modes of information processing at the brain scale is not yet fully understood. Here we use "Joint Time-Vertex Spectral Analysis" to characterize the joint spectral content of brain activity both in time (temporal frequencies) and in space over the connectivity graph (spatial connectome harmonics). This method allows us to characterize the relationship between spatially localized or distributed neural processes on one side and their respective temporal frequency bands in source-reconstructed M/EEG signals. We explore this approach on two different datasets, an auditory steady-state response (ASSR) and a visual grating task. Our results suggest that different information processing mechanisms are carried out at different frequency bands: while spatially distributed activity (which may also be interpreted as integration) specifically occurs at low temporal frequencies (alpha and theta) and low graph spatial frequencies, localized electrical activity (i.e., segregation) is observed at high temporal frequencies (high and low gamma) over restricted high spatial graph frequencies. Crucially, the estimated contribution of the distributed and localized neural activity predicts performance in a behavioral task, demonstrating the neurophysiological relevance of the joint time-vertex spectral representation.


Assuntos
Conectoma , Humanos , Cabeça , Cognição , Neurônios , Encéfalo
3.
Brain ; 145(5): 1653-1667, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35416942

RESUMO

Epilepsy presurgical investigation may include focal intracortical single-pulse electrical stimulations with depth electrodes, which induce cortico-cortical evoked potentials at distant sites because of white matter connectivity. Cortico-cortical evoked potentials provide a unique window on functional brain networks because they contain sufficient information to infer dynamical properties of large-scale brain connectivity, such as preferred directionality and propagation latencies. Here, we developed a biologically informed modelling approach to estimate the neural physiological parameters of brain functional networks from the cortico-cortical evoked potentials recorded in a large multicentric database. Specifically, we considered each cortico-cortical evoked potential as the output of a transient stimulus entering the stimulated region, which directly propagated to the recording region. Both regions were modelled as coupled neural mass models, the parameters of which were estimated from the first cortico-cortical evoked potential component, occurring before 80 ms, using dynamic causal modelling and Bayesian model inversion. This methodology was applied to the data of 780 patients with epilepsy from the F-TRACT database, providing a total of 34 354 bipolar stimulations and 774 445 cortico-cortical evoked potentials. The cortical mapping of the local excitatory and inhibitory synaptic time constants and of the axonal conduction delays between cortical regions was obtained at the population level using anatomy-based averaging procedures, based on the Lausanne2008 and the HCP-MMP1 parcellation schemes, containing 130 and 360 parcels, respectively. To rule out brain maturation effects, a separate analysis was performed for older (>15 years) and younger patients (<15 years). In the group of older subjects, we found that the cortico-cortical axonal conduction delays between parcels were globally short (median = 10.2 ms) and only 16% were larger than 20 ms. This was associated to a median velocity of 3.9 m/s. Although a general lengthening of these delays with the distance between the stimulating and recording contacts was observed across the cortex, some regions were less affected by this rule, such as the insula for which almost all efferent and afferent connections were faster than 10 ms. Synaptic time constants were found to be shorter in the sensorimotor, medial occipital and latero-temporal regions, than in other cortical areas. Finally, we found that axonal conduction delays were significantly larger in the group of subjects younger than 15 years, which corroborates that brain maturation increases the speed of brain dynamics. To our knowledge, this study is the first to provide a local estimation of axonal conduction delays and synaptic time constants across the whole human cortex in vivo, based on intracerebral electrophysiological recordings.


Assuntos
Epilepsia , Potenciais Evocados , Teorema de Bayes , Encéfalo , Mapeamento Encefálico/métodos , Estimulação Elétrica/métodos , Potenciais Evocados/fisiologia , Humanos
4.
Proc Natl Acad Sci U S A ; 117(33): 20244-20253, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759211

RESUMO

Structural connectivity in the brain is typically studied by reducing its observation to a single spatial resolution. However, the brain possesses a rich architecture organized over multiple scales linked to one another. We explored the multiscale organization of human connectomes using datasets of healthy subjects reconstructed at five different resolutions. We found that the structure of the human brain remains self-similar when the resolution of observation is progressively decreased by hierarchical coarse-graining of the anatomical regions. Strikingly, a geometric network model, where distances are not Euclidean, predicts the multiscale properties of connectomes, including self-similarity. The model relies on the application of a geometric renormalization protocol which decreases the resolution by coarse-graining and averaging over short similarity distances. Our results suggest that simple organizing principles underlie the multiscale architecture of human structural brain networks, where the same connectivity law dictates short- and long-range connections between different brain regions over many resolutions. The implications are varied and can be substantial for fundamental debates, such as whether the brain is working near a critical point, as well as for applications including advanced tools to simplify the digital reconstruction and simulation of the brain.


Assuntos
Encéfalo/fisiologia , Conectoma , Modelos Neurológicos , Vias Neurais , Humanos , Modelos Estatísticos , Rede Nervosa
5.
Proc Natl Acad Sci U S A ; 116(42): 21219-21227, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570622

RESUMO

The white matter architecture of the brain imparts a distinct signature on neuronal coactivation patterns. Interregional projections promote synchrony among distant neuronal populations, giving rise to richly patterned functional networks. A variety of statistical, communication, and biophysical models have been proposed to study the relationship between brain structure and function, but the link is not yet known. In the present report we seek to relate the structural and functional connection profiles of individual brain areas. We apply a simple multilinear model that incorporates information about spatial proximity, routing, and diffusion between brain regions to predict their functional connectivity. We find that structure-function relationships vary markedly across the neocortex. Structure and function correspond closely in unimodal, primary sensory, and motor regions, but diverge in transmodal cortex, particularly the default mode and salience networks. The divergence between structure and function systematically follows functional and cytoarchitectonic hierarchies. Altogether, the present results demonstrate that structural and functional networks do not align uniformly across the brain, but gradually uncouple in higher-order polysensory areas.


Assuntos
Neocórtex/fisiologia , Vias Neurais/fisiologia , Adulto , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Modelos Neurológicos , Substância Branca/fisiologia
6.
Neuroimage ; 243: 118546, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478823

RESUMO

Signaling in brain networks unfolds over multiple topological scales. Areas may exchange information over local circuits, encompassing direct neighbours and areas with similar functions, or over global circuits, encompassing distant neighbours with dissimilar functions. Here we study how the organization of cortico-cortical networks mediate localized and global communication by parametrically tuning the range at which signals are transmitted on the white matter connectome. We show that brain regions vary in their preferred communication scale. By investigating the propensity for brain areas to communicate with their neighbors across multiple scales, we naturally reveal their functional diversity: unimodal regions show preference for local communication and multimodal regions show preferences for global communication. We show that these preferences manifest as region- and scale-specific structure-function coupling. Namely, the functional connectivity of unimodal regions emerges from monosynaptic communication in small-scale circuits, while the functional connectivity of transmodal regions emerges from polysynaptic communication in large-scale circuits. Altogether, the present findings reveal that communication preferences are highly heterogeneous across the cortex, shaping regional differences in structure-function coupling.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Adulto , Comunicação , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto Jovem
7.
Neuroimage ; 244: 118611, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560267

RESUMO

The functional organization of neural processes is constrained by the brain's intrinsic structural connectivity, i.e., the connectome. Here, we explore how structural connectivity can improve the representation of brain activity signals and their dynamics. Using a multi-modal imaging dataset (electroencephalography, structural MRI, and diffusion MRI), we represent electrical brain activity at the cortical surface as a time-varying composition of harmonic modes of structural connectivity. These harmonic modes are known as connectome harmonics. Here we describe brain activity signal as a time-varying combination of connectome harmonics. We term this description as the connectome spectrum of the signal. We found that: first, the brain activity signal is represented more compactly by the connectome spectrum than by the traditional area-based representation; second, the connectome spectrum characterizes fast brain dynamics in terms of signal broadcasting profile, revealing different temporal regimes of integration and segregation that are consistent across participants. And last, the connectome spectrum characterizes fast brain dynamics with fewer degrees of freedom than area-based signal representations. Specifically, we show that a smaller number of dimensions capture the differences between low-level and high-level visual processing in the connectome spectrum. Also, we demonstrate that connectome harmonics capture more sensitively the topological properties of brain activity. In summary, this work provides statistical, functional, and topological evidence indicating that the description of brain activity in terms of structural connectivity fosters a more comprehensive understanding of large-scale dynamic neural functioning.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma , Adulto , Cognição , Imagem de Difusão por Ressonância Magnética , Eletroencefalografia , Feminino , Humanos , Masculino , Fenômenos Fisiológicos do Sistema Nervoso , Adulto Jovem
8.
Proc Natl Acad Sci U S A ; 115(49): 12495-12500, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30455310

RESUMO

Exposure to childhood trauma (CT) increases the risk for psychosis and affects the development of brain structures, possibly through oxidative stress. As oxidative stress is also linked to psychosis, it may interact with CT, leading to a more severe clinical phenotype. In 133 patients with early psychosis (EPP), we explored the relationships between CT and hippocampal, amygdala, and intracranial volume (ICV); blood antioxidant defenses [glutathione peroxidase (GPx) and thioredoxin/peroxiredoxin (Trx/Prx)]; psychopathological results; and neuropsychological results. Nonadjusted hippocampal volume correlated negatively with GPx activity in patients with CT, but not in patients without CT. In patients with CT with high GPx activity (high-GPx+CT), hippocampal volume was decreased compared with that in patients with low-GPx+CT and patients without CT, who had similar hippocampal volumes. Patients with high-GPx+CT had more severe positive and disorganized symptoms than other patients. Interestingly, Trx and oxidized Prx levels correlated negatively with GPx only in patients with low-GPx+CT. Moreover, patients with low-GPx+CT performed better than other patients on cognitive tasks. Discriminant analysis combining redox markers, hippocampal volume, clinical scores, and cognitive scores allowed for stratification of the patients into subgroups. In conclusion, traumatized EPP with high peripheral oxidation status (high-GPx activity) had smaller hippocampal volumes and more severe symptoms, while those with lower oxidation status (low-GPx activity) showed better cognition and regulation of GPx and Trx/Prx systems. These results suggest that maintained regulation of various antioxidant systems allowed for compensatory mechanisms preventing long-term neuroanatomical and clinical impacts. The redox marker profile may thus represent important biomarkers for defining treatment strategies in patients with psychosis.


Assuntos
Estresse Oxidativo , Transtornos Psicóticos/etiologia , Ferimentos e Lesões/complicações , Adulto , Antioxidantes , Criança , Feminino , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Masculino , Oxirredução , Peroxirredoxinas , Tiorredoxinas , Adulto Jovem
9.
Neuroimage ; 221: 117137, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32652217

RESUMO

We present an approach for tracking fast spatiotemporal cortical dynamics in which we combine white matter connectivity data with source-projected electroencephalographic (EEG) data. We employ the mathematical framework of graph signal processing in order to derive the Fourier modes of the brain structural connectivity graph, or "network harmonics". These network harmonics are naturally ordered by smoothness. Smoothness in this context can be understood as the amount of variation along the cortex, leading to a multi-scale representation of brain connectivity. We demonstrate that network harmonics provide a sparse representation of the EEG signal, where, at certain times, the smoothest 15 network harmonics capture 90% of the signal power. This suggests that network harmonics are functionally meaningful, which we demonstrate by using them as a basis for the functional EEG data recorded from a face detection task. There, only 13 network harmonics are sufficient to track the large-scale cortical activity during the processing of the stimuli with a 50 â€‹ms resolution, reproducing well-known activity in the fusiform face area as well as revealing co-activation patterns in somatosensory/motor and frontal cortices that an unconstrained ROI-by-ROI analysis fails to capture. The proposed approach is simple and fast, provides a means of integration of multimodal datasets, and is tied to a theoretical framework in mathematics and physics. Thus, network harmonics point towards promising research directions both theoretically - for example in exploring the relationship between structure and function in the brain - and practically - for example for network tracking in different tasks and groups of individuals, such as patients.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Eletroencefalografia/métodos , Reconhecimento Facial/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Processamento de Sinais Assistido por Computador , Adulto Jovem
10.
Hum Brain Mapp ; 41(14): 4041-4061, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33448519

RESUMO

The structural complexity of the thalamus, due to its mixed composition of gray and white matter, make it challenging to disjoint and quantify each tissue contribution to the thalamic anatomy. This work promotes the use of partial-volume-based over probabilistic-based tissue segmentation approaches to better capture thalamic gray matter differences between patients at different stages of psychosis (early and chronic) and healthy controls. The study was performed on a cohort of 23 patients with schizophrenia, 41 with early psychosis and 69 age and sex-matched healthy subjects. Six tissue segmentation approaches were employed to obtain the gray matter concentration/probability images. The statistical tests were applied at three different anatomical scales: whole thalamus, thalamic subregions and voxel-wise. The results suggest that the partial volume model estimation of gray matter is more sensitive to detect atrophies within the thalamus of patients with psychosis. However all the methods detected gray matter deficit in the pulvinar, particularly in early stages of psychosis. This study demonstrates also that the gray matter decrease varies nonlinearly with age and between nuclei. While a gray matter loss was found in the pulvinar of patients in both stages of psychosis, reduced gray matter in the mediodorsal was only observed in early psychosis subjects. Finally, our analyses point to alterations in a sub-region comprising the lateral posterior and ventral posterior nuclei. The obtained results reinforce the hypothesis that thalamic gray matter assessment is more reliable when the tissues segmentation method takes into account the partial volume effect.


Assuntos
Substância Cinzenta/patologia , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Transtornos Psicóticos/patologia , Esquizofrenia/patologia , Núcleos Talâmicos/patologia , Adulto , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Transtornos Psicóticos/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Fatores de Tempo , Adulto Jovem
11.
J Magn Reson Imaging ; 51(6): 1779-1788, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31710412

RESUMO

BACKGROUND: Studying brain interindividual variations has recently gained interest to understand different human behaviors. It is particularly important to investigate how a variety of functional differences can be associated with a few differences in brain structure. It would be more meaningful if such an investigation is performed jointly at the network level to connect structural building blocks to functional variations modules. PURPOSE: To decompose the interindividual variations of brain in the form of mutual functional and structural subnetworks based on a data-driven approach. STUDY TYPE: Retrospective. POPULATION: In all, 92 healthy subjects. FIELD STRENGTH/SEQUENCE: 3T Siemens/MPRAGE, diffusion spectrum imaging (DSI) acquisition protocol, gradient echo sequence. ASSESSMENT: The proposed approach was quantitatively assessed by examining the consistency of the networks against the number of subjects. Distribution of the obtained components across brain regions was studied and their relevance was qualitatively evaluated by comparison to variations that had been independently reported previously. STATISTICAL TESTS: Permutation test, two-sample t-test, Pearson correlation coefficient. RESULTS: Ten pairs of components including functional and structural subnetworks were obtained. Assessing the reproducibility of the proposed method with respect to the sample size indicated reliable detection of connections (above 70%) for all components by reducing the number of subjects to 70. Specifically, one of the functional subnetworks can be used to distinguish left-handed from right-handed people (P = 2.6 × 10-8 ) as the basic interindividual variation. This functional subnetwork has a main overlap (40.18%) with the somatomotor system and the Broca part was captured in its corresponding structural subnetwork. DATA CONCLUSION: These results show that the proposed method can reveal intersubject variations systematically through a mathematical algorithm of joint independent component analysis. They confirm that intersubject variations can be expressed in the form of building blocks. In contrast to the functional subnetworks that were discoverable independently, their structural counterparts were found and interpreted only in conjunction with the functional subnetworks. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:1779-1788.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos
12.
PLoS Comput Biol ; 15(3): e1006833, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30849087

RESUMO

Communication of signals among nodes in a complex network poses fundamental problems of efficiency and cost. Routing of messages along shortest paths requires global information about the topology, while spreading by diffusion, which operates according to local topological features, is informationally "cheap" but inefficient. We introduce a stochastic model for network communication that combines local and global information about the network topology to generate biased random walks on the network. The model generates a continuous spectrum of dynamics that converge onto shortest-path and random-walk (diffusion) communication processes at the limiting extremes. We implement the model on two cohorts of human connectome networks and investigate the effects of varying the global information bias on the network's communication cost. We identify routing strategies that approach a (highly efficient) shortest-path communication process with a relatively small global information bias on the system's dynamics. Moreover, we show that the cost of routing messages from and to hub nodes varies as a function of the global information bias driving the system's dynamics. Finally, we implement the model to identify individual subject differences from a communication dynamics point of view. The present framework departs from the classical shortest paths vs. diffusion dichotomy, unifying both models under a single family of dynamical processes that differ by the extent to which global information about the network topology influences the routing patterns of neural signals traversing the network.


Assuntos
Mapeamento Encefálico/métodos , Conectoma , Estudos de Coortes , Comunicação , Humanos , Modelos Neurológicos , Processos Estocásticos
13.
Neuroradiology ; 62(11): 1371-1380, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32556424

RESUMO

PURPOSE: We aimed at assessing the potential of automated MR morphometry to assess individual basal ganglia and thalamus volumetric changes at the chronic phase after cortical stroke. METHODS: Ninety-six patients (mean age: 65 ± 18 years, male 55) with cortical stroke at the chronic phase were retrospectively included. Patients were scanned at 1.5 T or 3 T using a T1-MPRAGE sequence. Resulting 3D images were processed with the MorphoBox prototype software to automatically segment basal ganglia and thalamus structures, and to obtain Z scores considering the confounding effects of age and sex. Stroke volume was estimated by manual delineation on T2-SE imaging. Z scores were compared between ipsi- and contralateral stroke side and according to the vascular territory. Potential relationship between Z scores and stroke volume was assessed using the Spearman correlation coefficient. RESULTS: Basal ganglia and thalamus volume Z scores were lower ipsilaterally to MCA territory stroke (p values < 0.034) while they were not different between ipsi- and contralateral stroke sides in non-MCA territory stroke (p values > 0.37). In MCA territory stroke, ipsilateral caudate nucleus (rho = - 0.34, p = 0.007), putamen (rho = - 0.50, p < 0.001), pallidum (rho = - 0.44, p < 0.001), and thalamus (rho = - 0.48, p < 0.001) volume Z scores negatively correlated with the cortical stroke volume. This relation was not influenced by cardiovascular risk factors or time since stroke. CONCLUSION: Automated MR morphometry demonstrated atrophy of ipsilateral basal ganglia and thalamus at the chronic phase after cortical stroke in the MCA territory. The atrophy was related to stroke volume. These results confirm the potential role for automated MRI morphometry to assess remote changes after stroke.


Assuntos
Gânglios da Base/patologia , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/patologia , Tálamo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Gânglios da Base/diagnóstico por imagem , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Tálamo/diagnóstico por imagem
14.
Neuroimage ; 184: 335-348, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30237036

RESUMO

A fundamental question in systems neuroscience is how endogenous neuronal activity self-organizes during particular brain states. Recent neuroimaging studies have demonstrated systematic relationships between resting-state and task-induced functional connectivity (FC). In particular, continuous task studies, such as movie watching, speak to alterations in coupling among cortical regions and enhanced fluctuations in FC compared to the resting-state. This suggests that FC may reflect systematic and large-scale reorganization of functionally integrated responses while subjects are watching movies. In this study, we characterized fluctuations in FC during resting-state and movie-watching conditions. We found that the FC patterns induced systematically by movie-watching can be explained with a single principal component. These condition-specific FC fluctuations overlapped with inter-subject synchronization patterns in occipital and temporal brain regions. However, unlike inter-subject synchronization, condition-specific FC patterns were characterized by increased correlations within frontal brain regions and reduced correlations between frontal-parietal brain regions. We investigated these condition-specific functional variations as a shorter time scale, using time-resolved FC. The time-resolved FC showed condition-specificity over time; notably when subjects watched both the same and different movies. To explain self-organisation of global FC through the alterations in local dynamics, we used a large-scale computational model. We found that condition-specific reorganization of FC could be explained by local changes that engendered changes in FC among higher-order association regions, mainly in frontal and parietal cortices.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Filmes Cinematográficos , Rede Nervosa/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Análise de Componente Principal , Adulto Jovem
15.
Int J Neuropsychopharmacol ; 22(8): 478-487, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283822

RESUMO

BACKGROUND: There is increasing evidence that redox dysregulation, which can lead to oxidative stress and eventually to impairment of oligodendrocytes and parvalbumin interneurons, may underlie brain connectivity alterations in schizophrenia. Accordingly, we previously reported that levels of brain antioxidant glutathione in the medial prefrontal cortex were positively correlated with increased functional connectivity along the cingulum bundle in healthy controls but not in early psychosis patients. In a recent randomized controlled trial, we observed that 6-month supplementation with a glutathione precursor, N-acetyl-cysteine, increased brain glutathione levels and improved symptomatic expression and processing speed. METHODS: We investigated the effect of N-acetyl-cysteine supplementation on the functional connectivity between regions of the cingulate cortex, which have been linked to positive symptoms and processing speed decline. In this pilot study, we compared structural connectivity and resting-state functional connectivity between early psychosis patients treated with 6-month N-acetyl-cysteine (n = 9) or placebo (n = 11) supplementation with sex- and age-matched healthy control subjects (n = 74). RESULTS: We observed that 6-month N-acetyl-cysteine supplementation increases functional connectivity along the cingulum and more precisely between the caudal anterior part and the isthmus of the cingulate cortex. These functional changes can be partially explained by an increase of centrality of these regions in the functional brain network. CONCLUSIONS: N-acetyl-cysteine supplementation has a positive effect on functional connectivity within the cingulate cortex in early psychosis patients. To our knowledge, this is the first study suggesting that increased brain glutathione levels via N-acetyl-cysteine supplementation may improve brain functional connectivity.


Assuntos
Acetilcisteína/uso terapêutico , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Giro do Cíngulo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Psicóticos/tratamento farmacológico , Acetilcisteína/efeitos adversos , Adulto , Antioxidantes/efeitos adversos , Mapeamento Encefálico/métodos , Suplementos Nutricionais/efeitos adversos , Método Duplo-Cego , Europa (Continente) , Feminino , Glutationa/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Projetos Piloto , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/psicologia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
16.
Cereb Cortex ; 28(8): 2948-2958, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981635

RESUMO

The brain is a network that mediates information processing through a wide range of states. The extent of state diversity is a reflection of the entropy of the network. Here we measured the entropy of brain regions (nodes) in empirical and modeled functional networks reconstructed from resting state fMRI to address the connection of entropy at rest with the underlying structure measured through diffusion spectrum imaging. Using 18 empirical and 18 modeled stroke networks, we also investigated the effect that focal lesions have on node entropy and information diffusion. Overall, positive correlations between node entropy and structure were observed, especially between node entropy and node strength in both empirical and modeled data. Although lesions were restricted to one hemisphere in all stroke patients, entropy reduction was not only present in nodes from the damaged hemisphere, but also in nodes from the contralesioned hemisphere, an effect replicated in modeled stroke networks. Globally, information diffusion was also affected in empirical and modeled strokes compared with healthy controls. This is the first study showing that artificial lesions affect local and global network aspects in very similar ways compared with empirical strokes, shedding new light into the functional nature of stroke.


Assuntos
Lesões Encefálicas/patologia , Mapeamento Encefálico , Entropia , Vias Neurais/fisiopatologia , Descanso , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/etiologia , Estudos de Casos e Controles , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Vias Neurais/diagnóstico por imagem , Oxigênio/sangue , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia
17.
Cereb Cortex ; 28(7): 2655-2664, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722805

RESUMO

Converging evidence from activation, connectivity, and stimulation studies suggests that auditory brain networks are lateralized. Here we show that these findings can be at least partly explained by the asymmetric network embedding of the primary auditory cortices. Using diffusion-weighted imaging in 3 independent datasets, we investigate the propensity for left and right auditory cortex to communicate with other brain areas by quantifying the centrality of the auditory network across a spectrum of communication mechanisms, from shortest path communication to diffusive spreading. Across all datasets, we find that the right auditory cortex is better integrated in the connectome, facilitating more efficient communication with other areas, with much of the asymmetry driven by differences in communication pathways to the opposite hemisphere. Critically, the primacy of the right auditory cortex emerges only when communication is conceptualized as a diffusive process, taking advantage of more than just the topologically shortest paths in the network. Altogether, these results highlight how the network configuration and embedding of a particular region may contribute to its functional lateralization.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Lateralidade Funcional , Estimulação Acústica , Adulto , Idoso , Córtex Auditivo/diagnóstico por imagem , Vias Auditivas/diagnóstico por imagem , Estudos de Coortes , Comunicação , Conectoma , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Adulto Jovem
18.
Neuroimage ; 180(Pt B): 534-546, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29024792

RESUMO

Our behavior entails a flexible and context-sensitive interplay between brain areas to integrate information according to goal-directed requirements. However, the neural mechanisms governing the entrainment of functionally specialized brain areas remain poorly understood. In particular, the question arises whether observed changes in the regional activity for different cognitive conditions are explained by modifications of the inputs to the brain or its connectivity? We observe that transitions of fMRI activity between areas convey information about the tasks performed by 19 subjects, watching a movie versus a black screen (rest). We use a model-based framework that explains this spatiotemporal functional connectivity pattern by the local variability for 66 cortical regions and the network effective connectivity between them. We find that, among the estimated model parameters, movie viewing affects to a larger extent the local activity, which we interpret as extrinsic changes related to the increased stimulus load. However, detailed changes in the effective connectivity preserve a balance in the propagating activity and select specific pathways such that high-level brain regions integrate visual and auditory information, in particular boosting the communication between the two brain hemispheres. These findings speak to a dynamic coordination underlying the functional integration in the brain.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Filmes Cinematográficos , Vias Neurais/fisiologia , Estimulação Luminosa , Descanso/fisiologia , Adulto Jovem
19.
Brain ; 140(4): 1068-1085, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334882

RESUMO

While several studies have shown that focal lesions affect the communication between structurally normal regions of the brain, and that these changes may correlate with behavioural deficits, their impact on brain's information processing capacity is currently unknown. Here we test the hypothesis that focal lesions decrease the brain's information processing capacity, of which changes in functional connectivity may be a measurable correlate. To measure processing capacity, we turned to whole brain computational modelling to estimate the integration and segregation of information in brain networks. First, we measured functional connectivity between different brain areas with resting state functional magnetic resonance imaging in healthy subjects (n = 26), and subjects who had suffered a cortical stroke (n = 36). We then used a whole-brain network model that coupled average excitatory activities of local regions via anatomical connectivity. Model parameters were optimized in each healthy or stroke participant to maximize correlation between model and empirical functional connectivity, so that the model's effective connectivity was a veridical representation of healthy or lesioned brain networks. Subsequently, we calculated two model-based measures: 'integration', a graph theoretical measure obtained from functional connectivity, which measures the connectedness of brain networks, and 'information capacity', an information theoretical measure that cannot be obtained empirically, representative of the segregative ability of brain networks to encode distinct stimuli. We found that both measures were decreased in stroke patients, as compared to healthy controls, particularly at the level of resting-state networks. Furthermore, we found that these measures, especially information capacity, correlate with measures of behavioural impairment and the segregation of resting-state networks empirically measured. This study shows that focal lesions affect the brain's ability to represent stimuli and task states, and that information capacity measured through whole brain models is a theory-driven measure of processing capacity that could be used as a biomarker of injury for outcome prediction or target for rehabilitation intervention.


Assuntos
Encéfalo/diagnóstico por imagem , Processos Mentais , Modelos Neurológicos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/psicologia , Adulto , Mapeamento Encefálico , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/psicologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos , Estudos Prospectivos , Descanso , Reabilitação do Acidente Vascular Cerebral
20.
Neuroimage ; 155: 460-472, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28408290

RESUMO

Most fetal brain MRI reconstruction algorithms rely only on brain tissue-relevant voxels of low-resolution (LR) images to enhance the quality of inter-slice motion correction and image reconstruction. Consequently the fetal brain needs to be localized and extracted as a first step, which is usually a laborious and time consuming manual or semi-automatic task. We have proposed in this work to use age-matched template images as prior knowledge to automatize brain localization and extraction. This has been achieved through a novel automatic brain localization and extraction method based on robust template-to-slice block matching and deformable slice-to-template registration. Our template-based approach has also enabled the reconstruction of fetal brain images in standard radiological anatomical planes in a common coordinate space. We have integrated this approach into our new reconstruction pipeline that involves intensity normalization, inter-slice motion correction, and super-resolution (SR) reconstruction. To this end we have adopted a novel approach based on projection of every slice of the LR brain masks into the template space using a fusion strategy. This has enabled the refinement of brain masks in the LR images at each motion correction iteration. The overall brain localization and extraction algorithm has shown to produce brain masks that are very close to manually drawn brain masks, showing an average Dice overlap measure of 94.5%. We have also demonstrated that adopting a slice-to-template registration and propagation of the brain mask slice-by-slice leads to a significant improvement in brain extraction performance compared to global rigid brain extraction and consequently in the quality of the final reconstructed images. Ratings performed by two expert observers show that the proposed pipeline can achieve similar reconstruction quality to reference reconstruction based on manual slice-by-slice brain extraction. The proposed brain mask refinement and reconstruction method has shown to provide promising results in automatic fetal brain MRI segmentation and volumetry in 26 fetuses with gestational age range of 23 to 38 weeks.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/embriologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Diagnóstico Pré-Natal/métodos , Feminino , Idade Gestacional , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA