Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 22(5): 586-594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33859405

RESUMO

Two microglial TAM receptor tyrosine kinases, Axl and Mer, have been linked to Alzheimer's disease, but their roles in disease have not been tested experimentally. We find that in Alzheimer's disease and its mouse models, induced expression of Axl and Mer in amyloid plaque-associated microglia was coupled to induced plaque decoration by the TAM ligand Gas6 and its co-ligand phosphatidylserine. In the APP/PS1 mouse model of Alzheimer's disease, genetic ablation of Axl and Mer resulted in microglia that were unable to normally detect, respond to, organize or phagocytose amyloid-ß plaques. These major deficits notwithstanding, TAM-deficient APP/PS1 mice developed fewer dense-core plaques than APP/PS1 mice with normal microglia. Our findings reveal that the TAM system is an essential mediator of microglial recognition and engulfment of amyloid plaques and that TAM-driven microglial phagocytosis does not inhibit, but rather promotes, dense-core plaque development.


Assuntos
Doença de Alzheimer/imunologia , Microglia/patologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Microscopia Intravital , Masculino , Camundongos , Camundongos Knockout , Microglia/imunologia , Microscopia Confocal , Microscopia de Fluorescência por Excitação Multifotônica , Fagocitose/imunologia , Presenilina-1/genética , Proteínas Proto-Oncogênicas/genética , RNA-Seq , Receptores Proteína Tirosina Quinases/genética , Análise de Célula Única , c-Mer Tirosina Quinase/genética , Receptor Tirosina Quinase Axl
2.
Cell ; 173(5): 1135-1149.e15, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29754817

RESUMO

A primary cause of disease progression in type 2 diabetes (T2D) is ß cell dysfunction due to inflammatory stress and insulin resistance. However, preventing ß cell exhaustion under diabetic conditions is a major therapeutic challenge. Here, we identify the vitamin D receptor (VDR) as a key modulator of inflammation and ß cell survival. Alternative recognition of an acetylated lysine in VDR by bromodomain proteins BRD7 and BRD9 directs association to PBAF and BAF chromatin remodeling complexes, respectively. Mechanistically, ligand promotes VDR association with PBAF to effect genome-wide changes in chromatin accessibility and enhancer landscape, resulting in an anti-inflammatory response. Importantly, pharmacological inhibition of BRD9 promotes PBAF-VDR association to restore ß cell function and ameliorate hyperglycemia in murine T2D models. These studies reveal an unrecognized VDR-dependent transcriptional program underpinning ß cell survival and identifies the VDR:PBAF/BAF association as a potential therapeutic target for T2D.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Receptores de Calcitriol/metabolismo , Fatores de Transcrição/metabolismo , Vitamina D/farmacologia , Animais , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Montagem e Desmontagem da Cromatina , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Humanos , Insulina/sangue , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mutagênese Sítio-Dirigida , Fosforilação Oxidativa/efeitos dos fármacos , Ligação Proteica , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Interferente Pequeno/metabolismo , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos
3.
Immunity ; 56(6): 1303-1319.e5, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315534

RESUMO

CD8+ T cells provide host protection against pathogens by differentiating into distinct effector and memory cell subsets, but how chromatin is site-specifically remodeled during their differentiation is unclear. Due to its critical role in regulating chromatin and enhancer accessibility through its nucleosome remodeling activities, we investigated the role of the canonical BAF (cBAF) chromatin remodeling complex in antiviral CD8+ T cells during infection. ARID1A, a subunit of cBAF, was recruited early after activation and established de novo open chromatin regions (OCRs) at enhancers. Arid1a deficiency impaired the opening of thousands of activation-induced enhancers, leading to loss of TF binding, dysregulated proliferation and gene expression, and failure to undergo terminal effector differentiation. Although Arid1a was dispensable for circulating memory cell formation, tissue-resident memory (Trm) formation was strongly impaired. Thus, cBAF governs the enhancer landscape of activated CD8+ T cells that orchestrates TF recruitment and activity and the acquisition of specific effector and memory differentiation states.


Assuntos
Linfócitos T CD8-Positivos , Sequências Reguladoras de Ácido Nucleico , Cromatina , Nucleossomos , Antivirais
4.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38842510

RESUMO

Accurate and comprehensive annotation of microprotein-coding small open reading frames (smORFs) is critical to our understanding of normal physiology and disease. Empirical identification of translated smORFs is carried out primarily using ribosome profiling (Ribo-seq). While effective, published Ribo-seq datasets can vary drastically in quality and different analysis tools are frequently employed. Here, we examine the impact of these factors on identifying translated smORFs. We compared five commonly used software tools that assess open reading frame translation from Ribo-seq (RibORFv0.1, RibORFv1.0, RiboCode, ORFquant, and Ribo-TISH) and found surprisingly low agreement across all tools. Only ~2% of smORFs were called translated by all five tools, and ~15% by three or more tools when assessing the same high-resolution Ribo-seq dataset. For larger annotated genes, the same analysis showed ~74% agreement across all five tools. We also found that some tools are strongly biased against low-resolution Ribo-seq data, while others are more tolerant. Analyzing Ribo-seq coverage revealed that smORFs detected by more than one tool tend to have higher translation levels and higher fractions of in-frame reads, consistent with what was observed for annotated genes. Together these results support employing multiple tools to identify the most confident microprotein-coding smORFs and choosing the tools based on the quality of the dataset and the planned downstream characterization experiments of the predicted smORFs.


Assuntos
Fases de Leitura Aberta , Software , Ribossomos/metabolismo , Ribossomos/genética , Anotação de Sequência Molecular/métodos , Humanos , Biossíntese de Proteínas , Biologia Computacional/métodos , Perfil de Ribossomos
5.
Cell ; 145(4): 622-34, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21549415

RESUMO

We report the immediate effects of estrogen signaling on the transcriptome of breast cancer cells using global run-on and sequencing (GRO-seq). The data were analyzed using a new bioinformatic approach that allowed us to identify transcripts directly from the GRO-seq data. We found that estrogen signaling directly regulates a strikingly large fraction of the transcriptome in a rapid, robust, and unexpectedly transient manner. In addition to protein-coding genes, estrogen regulates the distribution and activity of all three RNA polymerases and virtually every class of noncoding RNA that has been described to date. We also identified a large number of previously undetected estrogen-regulated intergenic transcripts, many of which are found proximal to estrogen receptor binding sites. Collectively, our results provide the most comprehensive measurement of the primary and immediate estrogen effects to date and a resource for understanding rapid signal-dependent transcription in other systems.


Assuntos
Neoplasias da Mama/genética , Biologia Computacional/métodos , Estrogênios/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Técnicas Genéticas , Humanos , RNA não Traduzido/genética , Análise de Sequência de DNA , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983841

RESUMO

Macrophages induce a number of inflammatory response genes in response to stimulation with microbial ligands. In response to endotoxin Lipid A, a gene-activation cascade of primary followed by secondary-response genes is induced. Epigenetic state is an important regulator of the kinetics, specificity, and mechanism of gene activation of these two classes. In particular, SWI/SNF chromatin-remodeling complexes are required for the induction of secondary-response genes, but not primary-response genes, which generally exhibit open chromatin. Here, we show that a recently discovered variant of the SWI/SNF complex, the noncanonical BAF complex (ncBAF), regulates secondary-response genes in the interferon (IFN) response pathway. Inhibition of bromodomain-containing protein 9 (BRD9), a subunit of the ncBAF complex, with BRD9 bromodomain inhibitors (BRD9i) or a degrader (dBRD9) led to reduction in a number of interferon-stimulated genes (ISGs) following stimulation with endotoxin lipid A. BRD9-dependent genes overlapped highly with a subset of genes differentially regulated by BET protein inhibition with JQ1 following endotoxin stimulation. We find that the BET protein BRD4 is cobound with BRD9 in unstimulated macrophages and corecruited upon stimulation to ISG promoters along with STAT1, STAT2, and IRF9, components of the ISGF3 complex activated downstream of IFN-alpha receptor stimulation. In the presence of BRD9i or dBRD9, STAT1-, STAT2-, and IRF9-binding is reduced, in some cases with reduced binding of BRD4. These results demonstrate a specific role for BRD9 and the ncBAF complex in ISG activation and identify an activity for BRD9 inhibitors and degraders in dampening endotoxin- and IFN-dependent gene expression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Interferons/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Antivirais/farmacologia , Proteínas de Ciclo Celular/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferon-alfa/farmacologia , Interferons/genética , Interferons/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Domínios Proteicos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos
7.
Genes Dev ; 28(14): 1562-77, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25030696

RESUMO

RXR signaling is predicted to have a major impact in macrophages, but neither the biological consequence nor the genomic basis of its ligand activation is known. Comprehensive genome-wide studies were carried out to map liganded RXR-mediated transcriptional changes, active binding sites, and cistromic interactions in the context of the macrophage genome architecture. The macrophage RXR cistrome has 5200 genomic binding sites, which are not impacted by ligand. Active enhancers are characterized by PU.1 binding, an increase of enhancer RNA, and P300 recruitment. Using these features, 387 liganded RXR-bound enhancers were linked to 226 genes, which predominantly reside in CTCF/cohesin-limited functional domains. These findings were molecularly validated using chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq), and we show that selected long-range enhancers communicate with promoters via stable or RXR-induced loops and that some of the enhancers interact with each other, forming an interchromosomal network. A set of angiogenic genes, including Vegfa, has liganded RXR-controlled enhancers and provides the macrophage with a novel inducible program.


Assuntos
Elementos Facilitadores Genéticos , Macrófagos/metabolismo , Neovascularização Fisiológica/fisiologia , Receptores X de Retinoides/metabolismo , Animais , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Histonas/metabolismo , Ligantes , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Compostos Orgânicos/farmacologia , RNA/metabolismo , Transcrição Gênica/efeitos dos fármacos
8.
Gastroenterology ; 159(5): 1866-1881.e8, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32717220

RESUMO

BACKGROUND & AIMS: Development of pancreatic ductal adenocarcinoma (PDA) involves acinar to ductal metaplasia and genesis of tuft cells. It has been a challenge to study these rare cells because of the lack of animal models. We investigated the role of tuft cells in pancreatic tumorigenesis. METHODS: We performed studies with LSL-KrasG12D/+;Ptf1aCre/+ mice (KC; develop pancreatic tumors), KC mice crossed with mice with pancreatic disruption of Pou2f3 (KPouC mice; do not develop tuft cells), or mice with pancreatic disruption of the hematopoietic prostaglandin D synthase gene (Hpgds, KHC mice) and wild-type mice. Mice were allowed to age or were given caerulein to induce pancreatitis; pancreata were collected and analyzed by histology, immunohistochemistry, RNA sequencing, ultrastructural microscopy, and metabolic profiling. We performed laser-capture dissection and RNA-sequencing analysis of pancreatic tissues from 26 patients with pancreatic intraepithelial neoplasia (PanIN), 19 patients with intraductal papillary mucinous neoplasms (IPMNs), and 197 patients with PDA. RESULTS: Pancreata from KC mice had increased formation of tuft cells and higher levels of prostaglandin D2 than wild-type mice. Pancreas-specific deletion of POU2F3 in KC mice (KPouC mice) resulted in a loss of tuft cells and accelerated tumorigenesis. KPouC mice had increased fibrosis and activation of immune cells after administration of caerulein. Pancreata from KPouC and KHC mice had significantly lower levels of prostaglandin D2, compared with KC mice, and significantly increased numbers of PanINs and PDAs. KPouC and KHC mice had increased pancreatic injury after administration of caerulein, significantly less normal tissue, more extracellular matrix deposition, and higher PanIN grade than KC mice. Human PanIN and intraductal papillary mucinous neoplasm had gene expression signatures associated with tuft cells and increased expression of Hpgds messenger RNA compared with PDA. CONCLUSIONS: In mice with KRAS-induced pancreatic tumorigenesis, loss of tuft cells accelerates tumorigenesis and increases the severity of caerulein-induced pancreatic injury, via decreased production of prostaglandin D2. These data are consistent with the hypothesis that tuft cells are a metaplasia-induced tumor attenuating cell type.


Assuntos
Carcinoma Ductal Pancreático/prevenção & controle , Transformação Celular Neoplásica/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/prevenção & controle , Prostaglandina D2/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Ceruletídeo , Modelos Animais de Doenças , Metabolismo Energético , Fibrose , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Camundongos Transgênicos , Mutação , Fatores de Transcrição de Octâmero/genética , Fatores de Transcrição de Octâmero/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Mol Cell ; 50(2): 212-22, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23523369

RESUMO

RNA polymerase II (Pol II) transcribes hundreds of kilobases of DNA, limiting the production of mRNAs and lncRNAs. We used global run-on sequencing (GRO-seq) to measure the rates of transcription by Pol II following gene activation. Elongation rates vary as much as 4-fold at different genomic loci and in response to two distinct cellular signaling pathways (i.e., 17ß-estradiol [E2] and TNF-α). The rates are slowest near the promoter and increase during the first ~15 kb transcribed. Gene body elongation rates correlate with Pol II density, resulting in systematically higher rates of transcript production at genes with higher Pol II density. Pol II dynamics following short inductions indicate that E2 stimulates gene expression by increasing Pol II initiation, whereas TNF-α reduces Pol II residence time at pause sites. Collectively, our results identify previously uncharacterized variation in the rate of transcription and highlight elongation as an important, variable, and regulated rate-limiting step during transcription.


Assuntos
RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Transdução de Sinais , Iniciação da Transcrição Genética , Estradiol/farmacologia , Estradiol/fisiologia , Humanos , Cinética , Células MCF-7 , Regiões Promotoras Genéticas , RNA Polimerase II/fisiologia , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Ativação Transcricional , Transcriptoma , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/fisiologia
10.
Proc Natl Acad Sci U S A ; 112(3): E297-302, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25564661

RESUMO

Enhancers are critical genomic elements that define cellular and functional identity through the spatial and temporal regulation of gene expression. Recent studies suggest that key genes regulating cell type-specific functions reside in enhancer-dense genomic regions (i.e., super enhancers, stretch enhancers). Here we report that enhancer RNAs (eRNAs) identified by global nuclear run-on sequencing are extensively transcribed within super enhancers and are dynamically regulated in response to cellular signaling. Using Toll-like receptor 4 (TLR4) signaling in macrophages as a model system, we find that transcription of super enhancer-associated eRNAs is dynamically induced at most of the key genes driving innate immunity and inflammation. Unexpectedly, genes repressed by TLR4 signaling are also associated with super enhancer domains and accompanied by massive repression of eRNA transcription. Furthermore, we find each super enhancer acts as a single regulatory unit within which eRNA and genic transcripts are coordinately regulated. The key regulatory activity of these domains is further supported by the finding that super enhancer-associated transcription factor binding is twice as likely to be conserved between human and mouse than typical enhancer sites. Our study suggests that transcriptional activities at super enhancers are critical components to understand the dynamic gene regulatory network.


Assuntos
Elementos Facilitadores Genéticos , Inflamação/metabolismo , RNA/genética , Animais , Células Cultivadas , Humanos , Camundongos , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Transcrição Gênica
11.
Proc Natl Acad Sci U S A ; 112(51): 15713-8, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644586

RESUMO

Liver fibrosis is characterized by the persistent deposition of extracellular matrix components by hepatic stellate cell (HSC)-derived myofibroblasts. It is the histological manifestation of progressive, but reversible wound-healing processes. An unabated fibrotic response results in chronic liver disease and cirrhosis, a pathological precursor of hepatocellular carcinoma. We report here that JQ1, a small molecule inhibitor of bromodomain-containing protein 4 (BRD4), a member of bromodomain and extraterminal (BET) proteins, abrogate cytokine-induced activation of HSCs. Cistromic analyses reveal that BRD4 is highly enriched at enhancers associated with genes involved in multiple profibrotic pathways, where BRD4 is colocalized with profibrotic transcription factors. Furthermore, we show that JQ1 is not only protective, but can reverse the fibrotic response in carbon tetrachloride-induced fibrosis in mouse models. Our results implicate that BRD4 can act as a global genomic regulator to direct the fibrotic response through its coordinated regulation of myofibroblast transcription. This suggests BRD4 as a potential therapeutic target for patients with fibrotic complications.


Assuntos
Cirrose Hepática Experimental/tratamento farmacológico , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Azepinas/farmacologia , Azepinas/uso terapêutico , Células Cultivadas , Células Estreladas do Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Triazóis/farmacologia , Triazóis/uso terapêutico
12.
Genome Res ; 23(8): 1210-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23636943

RESUMO

We have integrated and analyzed a large number of data sets from a variety of genomic assays using a novel computational pipeline to provide a global view of estrogen receptor 1 (ESR1; a.k.a. ERα) enhancers in MCF-7 human breast cancer cells. Using this approach, we have defined a class of primary transcripts (eRNAs) that are transcribed uni- or bidirectionally from estrogen receptor binding sites (ERBSs) with an average transcription unit length of ∼3-5 kb. The majority are up-regulated by short treatments with estradiol (i.e., 10, 25, or 40 min) with kinetics that precede or match the induction of the target genes. The production of eRNAs at ERBSs is strongly correlated with the enrichment of a number of genomic features that are associated with enhancers (e.g., H3K4me1, H3K27ac, EP300/CREBBP, RNA polymerase II, open chromatin architecture), as well as enhancer looping to target gene promoters. In the absence of eRNA production, strong enrichment of these features is not observed, even though ESR1 binding is evident. We find that flavopiridol, a CDK9 inhibitor that blocks transcription elongation, inhibits eRNA production but does not affect other molecular indicators of enhancer activity, suggesting that eRNA production occurs after the assembly of active enhancers. Finally, we show that an enhancer transcription "signature" based on GRO-seq data can be used for de novo enhancer prediction across cell types. Together, our studies shed new light on the activity of ESR1 at its enhancer sites and provide new insights about enhancer function.


Assuntos
Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio/fisiologia , Regulação da Expressão Gênica , RNA não Traduzido/genética , Sequência de Bases , Sítios de Ligação , Mapeamento Cromossômico , Sequência Consenso , Estradiol/fisiologia , Genoma Humano , Humanos , Células MCF-7 , Anotação de Sequência Molecular , Transcrição Gênica
13.
bioRxiv ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38234848

RESUMO

Accurate and comprehensive annotation of microprotein-coding small open reading frames (smORFs) is critical to our understanding of normal physiology and disease. Empirical identification of translated smORFs is carried out primarily using ribosome profiling (Ribo-seq). While effective, published Ribo-seq datasets can vary drastically in quality and different analysis tools are frequently employed. Here, we examine the impact of these factors on identifying translated smORFs. We compared five commonly used software tools that assess ORF translation from Ribo-seq (RibORFv0.1, RibORFv1.0, RiboCode, ORFquant, and Ribo-TISH), and found surprisingly low agreement across all tools. Only ~2% of smORFs were called translated by all five tools and ~15% by three or more tools when assessing the same high-resolution Ribo-seq dataset. For larger annotated genes, the same analysis showed ~72% agreement across all five tools. We also found that some tools are strongly biased against low-resolution Ribo-seq data, while others are more tolerant. Analyzing Ribo-seq coverage as a proxy for translation levels revealed that highly translated smORFs are more likely to be detected by more than one tool. Together these results support employing multiple tools to identify the most confident microprotein-coding smORFs, and choosing the tools based on the quality of the dataset and planned downstream characterization experiments of predicted smORFs.

14.
Science ; 380(6642): eabj5559, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37079666

RESUMO

Cells respond to mitochondrial poisons with rapid activation of the adenosine monophosphate-activated protein kinase (AMPK), causing acute metabolic changes through phosphorylation and prolonged adaptation of metabolism through transcriptional effects. Transcription factor EB (TFEB) is a major effector of AMPK that increases expression of lysosome genes in response to energetic stress, but how AMPK activates TFEB remains unresolved. We demonstrate that AMPK directly phosphorylates five conserved serine residues in folliculin-interacting protein 1 (FNIP1), suppressing the function of the folliculin (FLCN)-FNIP1 complex. FNIP1 phosphorylation is required for AMPK to induce nuclear translocation of TFEB and TFEB-dependent increases of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and estrogen-related receptor alpha (ERRα) messenger RNAs. Thus, mitochondrial damage triggers AMPK-FNIP1-dependent nuclear translocation of TFEB, inducing sequential waves of lysosomal and mitochondrial biogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP , Lisossomos , Mitocôndrias , Biogênese de Organelas , Proteínas Quinases Ativadas por AMP/metabolismo , Lisossomos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Humanos
15.
Aging Cell ; 22(11): e13996, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37837188

RESUMO

Aging promotes numerous intracellular changes in T cells that impact their effector function. Our data show that aging promotes an increase in the localization of STAT3 to the mitochondria (mitoSTAT3), which promotes changes in mitochondrial dynamics and function and T-cell cytokine production. Mechanistically, mitoSTAT3 increased the activity of aging T-cell mitochondria by increasing complex II. Limiting mitoSTAT3 using a mitochondria-targeted STAT3 inhibitor, Mtcur-1 lowered complex II activity, prevented age-induced changes in mitochondrial dynamics and function, and reduced Th17 inflammation. Exogenous expression of a constitutively phosphorylated form of STAT3 in T cells from young adults mimicked changes in mitochondrial dynamics and function in T cells from older adults and partially recapitulated aging-related cytokine profiles. Our data show the mechanistic link among mitoSTAT3, mitochondrial dynamics, function, and T-cell cytokine production.


Assuntos
Mitocôndrias , Dinâmica Mitocondrial , Mitocôndrias/metabolismo , Células Th17/metabolismo , Citocinas/metabolismo , Fator de Transcrição STAT3/metabolismo
16.
Nat Commun ; 14(1): 7791, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057326

RESUMO

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Pâncreas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fibroblastos/metabolismo , Carcinogênese/patologia , Microambiente Tumoral
17.
bioRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745372

RESUMO

Oncogenic lesions in pancreatic ductal adenocarcinoma (PDAC) hijack the epigenetic machinery in stromal components to establish a desmoplastic and therapeutic resistant tumor microenvironment (TME). Here we identify Class I histone deacetylases (HDACs) as key epigenetic factors facilitating the induction of pro-desmoplastic and pro-tumorigenic transcriptional programs in pancreatic stromal fibroblasts. Mechanistically, HDAC-mediated changes in chromatin architecture enable the activation of pro-desmoplastic programs directed by serum response factor (SRF) and forkhead box M1 (FOXM1). HDACs also coordinate fibroblast pro-inflammatory programs inducing leukemia inhibitory factor (LIF) expression, supporting paracrine pro-tumorigenic crosstalk. HDAC depletion in cancer-associated fibroblasts (CAFs) and treatment with the HDAC inhibitor entinostat (Ent) in PDAC mouse models reduce stromal activation and curb tumor progression. Notably, HDAC inhibition (HDACi) enriches a lipogenic fibroblast subpopulation, a potential precursor for myofibroblasts in the PDAC stroma. Overall, our study reveals the stromal targeting potential of HDACi, highlighting the utility of this epigenetic modulating approach in PDAC therapeutics.

18.
Nat Commun ; 14(1): 5195, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673892

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy in need of new therapeutic options. Using unbiased analyses of super-enhancers (SEs) as sentinels of core genes involved in cell-specific function, here we uncover a druggable SE-mediated RNA-binding protein (RBP) cascade that supports PDAC growth through enhanced mRNA translation. This cascade is driven by a SE associated with the RBP heterogeneous nuclear ribonucleoprotein F, which stabilizes protein arginine methyltransferase 1 (PRMT1) to, in turn, control the translational mediator ubiquitin-associated protein 2-like. All three of these genes and the regulatory SE are essential for PDAC growth and coordinately regulated by the Myc oncogene. In line with this, modulation of the RBP network by PRMT1 inhibition reveals a unique vulnerability in Myc-high PDAC patient organoids and markedly reduces tumor growth in male mice. Our study highlights a functional link between epigenetic regulation and mRNA translation and identifies components that comprise unexpected therapeutic targets for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Masculino , Animais , Camundongos , RNA , Epigênese Genética , Sequências Reguladoras de Ácido Nucleico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Metiltransferases , Proteínas de Ligação a RNA/genética
19.
Geroscience ; 43(5): 2139-2148, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34370163

RESUMO

Understanding basic mechanisms of aging holds great promise for developing interventions that prevent or delay many age-related declines and diseases simultaneously to increase human healthspan. However, a major confounding factor in aging research is the heterogeneity of the aging process itself. At the organismal level, it is clear that chronological age does not always predict biological age or susceptibility to frailty or pathology. While genetics and environment are major factors driving variable rates of aging, additional complexity arises because different organs, tissues, and cell types are intrinsically heterogeneous and exhibit different aging trajectories normally or in response to the stresses of the aging process (e.g., damage accumulation). Tackling the heterogeneity of aging requires new and specialized tools (e.g., single-cell analyses, mass spectrometry-based approaches, and advanced imaging) to identify novel signatures of aging across scales. Cutting-edge computational approaches are then needed to integrate these disparate datasets and elucidate network interactions between known aging hallmarks. There is also a need for improved, human cell-based models of aging to ensure that basic research findings are relevant to human aging and healthspan interventions. The San Diego Nathan Shock Center (SD-NSC) provides access to cutting-edge scientific resources to facilitate the study of the heterogeneity of aging in general and to promote the use of novel human cell models of aging. The center also has a robust Research Development Core that funds pilot projects on the heterogeneity of aging and organizes innovative training activities, including workshops and a personalized mentoring program, to help investigators new to the aging field succeed. Finally, the SD-NSC participates in outreach activities to educate the general community about the importance of aging research and promote the need for basic biology of aging research in particular.


Assuntos
Fragilidade , Gerociência , Envelhecimento , Humanos
20.
Science ; 372(6537): 91-94, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33795458

RESUMO

Neurons are the longest-lived cells in our bodies and lack DNA replication, which makes them reliant on a limited repertoire of DNA repair mechanisms to maintain genome fidelity. These repair mechanisms decline with age, but we have limited knowledge of how genome instability emerges and what strategies neurons and other long-lived cells may have evolved to protect their genomes over the human life span. A targeted sequencing approach in human embryonic stem cell-induced neurons shows that, in neurons, DNA repair is enriched at well-defined hotspots that protect essential genes. These hotspots are enriched with histone H2A isoforms and RNA binding proteins and are associated with evolutionarily conserved elements of the human genome. These findings provide a basis for understanding genome integrity as it relates to aging and disease in the nervous system.


Assuntos
Reparo do DNA , Genoma Humano , Instabilidade Genômica , Neurônios/metabolismo , Envelhecimento/genética , Dano ao DNA , DNA Intergênico , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Células-Tronco Embrionárias , Histonas/metabolismo , Humanos , Mitose , Mutação , Doenças do Sistema Nervoso/genética , Neurônios/citologia , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de DNA , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA