Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neuroinflammation ; 18(1): 138, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34130726

RESUMO

BACKGROUND: Cortical demyelination represents a prominent feature of the multiple sclerosis (MS) brain, especially in (late) progressive stages. We recently developed a new rat model that reassembles critical features of cortical pathology characteristic to progressive types of MS. In persons affected by MS, B-cell depleting anti-CD20 therapy proved successful in the relapsing remitting as well as the early progressive course of MS, with respect to reducing the relapse rate and number of newly formed lesions. However, if the development of cortical pathology can be prevented or at least slowed down is still not clear. The main goal of this study was thus to increase our understanding for the mode of action of B-cells and B-cell directed therapy on cortical lesions in our rat model. METHODS: For this purpose, we set up two separate experiments, with two different induction modes of B-cell depletion. Brain tissues were analyzed thoroughly using histology. RESULTS: We observed a marked reduction of cortical demyelination, microglial activation, astrocytic reaction, and apoptotic cell loss in anti-CD20 antibody treated groups. At the same time, we noted increased neuronal preservation compared to control groups, indicating a favorable impact of anti-CD20 therapy. CONCLUSION: These findings might pave the way for further research on the mode of action of B-cells and therefore help to improve therapeutic options for progressive MS.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos CD20/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/terapia , Animais , Contagem de Células , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Masculino , Esclerose Múltipla Crônica Progressiva/imunologia , Esclerose Múltipla Crônica Progressiva/terapia , Glicoproteína Mielina-Oligodendrócito/efeitos dos fármacos , Ratos
2.
Glia ; 67(3): 467-481, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30484905

RESUMO

The role of astrocytes in the pathophysiology of multiple sclerosis (MS) is discussed controversially. Especially the formation of the glial scar is often believed to act as a barrier for remyelination. At the same time, astrocytes are known to produce factors that influence oligodendrocyte precursor cell (OPC) survival. To explore these mechanisms, we investigated the astrocytic reaction in an animal model induced by immunization with myelin oligodendrocyte glycoprotein (MOG) in Dark Agouti (DA) rats, which mimics most of the histological features of MS. We correlated the astroglial reaction by immunohistochemistry (IHC) for glial fibrillary acidic protein (GFAP) to the remyelination capacity by in situ hybridization for mRNA of proteolipid protein (PLP), indicative of OPCs, over the full course of the disease. PLP mRNA peaked in early remyelinating lesions while the amount of GFAP positive astrocytes was highest in remyelinated lesions. In shadow plaques, we found at the same time all features of a glial scar and numbers of OPCs and mature oligodendrocytes, which were nearly equal to that in unaffected white matter areas. To assess the plaque environment, we furthermore quantitatively analyzed factors expressed by astrocytes previously suggested to influence remyelination. From our data, we conclude that remyelination occurs despite an abundant glial reaction in this animal model. The different patterns of astrocytic factors and the occurrence of different astrocytic phenotypes during lesion evolution furthermore indicate a finely regulated, balanced astrocytic involvement leading to successful repair.


Assuntos
Encéfalo/patologia , Encefalomielite Autoimune Experimental/patologia , Gliose/patologia , Bainha de Mielina/patologia , Remielinização/fisiologia , Medula Espinal/patologia , Animais , Encéfalo/fisiopatologia , Encefalomielite Autoimune Experimental/fisiopatologia , Gliose/fisiopatologia , Masculino , Neuroglia/patologia , Ratos , Medula Espinal/fisiopatologia
3.
Magn Reson Med ; 81(6): 3578-3587, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30693964

RESUMO

PURPOSE: In magnetic resonance elastography (MRE), a series of time-shifted images is acquired at specific phase offsets in relation to an induced mechanical excitation. To efficiently gather the set of phase offset images and to overcome limitations due to prolonged TEs and related susceptibility artifacts at low-frequency MRE, we developed an improved displacement encoding with a stimulated echoes (DENSE) method. METHODS: The proposed multiphase DENSE-MRE acquisition scheme allows full sampling of the wave propagation in 1 encoding direction during each TR using multiple readouts at specific phase offsets. With this approach, all phase offsets can be imaged in 1 TR without the need for whole sequence repetitions at time-shifted offsets relative to the excitation motion. We tested this technique in phantom experiments with 60 Hz and in the brain of 4 volunteers using 20-Hz harmonic excitation. RESULTS: Three-dimensional wave propagation could be acquired in 7 minutes 30 seconds. Following background phase elimination, clear wave images were obtained, showing the propagation of the waves over time. Calculated shear modulus maps of the phantom matched well to the maps obtained by conventional gradient-echo MRE. In the brain, low-frequency DENSE-MRE images were free of susceptibility-induced artifacts and the calculated maps showed a median global complex shear modulus magnitude of 0.72 kPa and phase angle of 1.03 rad across volunteers. CONCLUSION: The proposed multiphase DENSE approach allows efficient low-frequency MRE with short TEs and is well-suited for low-frequency MRE of the human brain.


Assuntos
Encéfalo/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas
4.
Nutrients ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398879

RESUMO

A central role for vitamin D (VD) in immune modulation has recently been recognized linking VD insufficiency to autoimmune disorders that commonly exhibit sex-associated differences. Similar to other autoimmune diseases, there is a higher incidence of multiple sclerosis (MS) in women, but a poorer prognosis in men, often characterized by a more rapid progression. Although sex hormones are most likely involved, this phenomenon is still poorly understood. Oxidative stress, modulated by VD serum levels as well as sex hormones, may act as a contributing factor to demyelination and axonal damage in both MS and the corresponding preclinical models. In this study, we analyzed sex-associated differences and VD effects utilizing an animal model that recapitulates histopathological features of the progressive MS phase (PMS). In contrast to relapsing-remitting MS (RRMS), PMS has been poorly investigated in this context. Male (n = 50) and female (n = 46) Dark Agouti rats received either VD (400 IU per week; VD+) or standard rodent food without extra VD (VD-) from weaning onwards. Myelination, microglial activation, apoptotic cell death and neuronal viability were assessed using immunohistochemical markers in brain tissue. Additionally, we also used two different histological markers against oxidized lipids along with colorimetric methods to measure protective polyphenols (PP) and total antioxidative capacity (TAC) in serum. Neurofilament light chain serum levels (sNfL) were analyzed using single-molecule array (SIMOA) analysis. We found significant differences between female and male animals. Female rats exhibited a better TAC and higher amounts of PP. Additionally, females showed higher myelin preservation, lower microglial activation and better neuronal survival while showing more apoptotic cells than male rats. We even found a delay in reaching the peak of the disease in females. Overall, both sexes benefitted from VD supplementation, represented by significantly less cortical, neuroaxonal and oxidative damage. Unexpectedly, male rats had an even higher overall benefit, most likely due to differences in oxidative capacity and defense systems.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Feminino , Masculino , Ratos , Animais , Caracteres Sexuais , Vitamina D , Vitaminas , Suplementos Nutricionais , Modelos Animais , Hormônios Esteroides Gonadais
5.
Talanta ; 270: 125518, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38128277

RESUMO

Multiple sclerosis (MS) is a prevalent immune-mediated inflammatory disease of the central nervous system inducing a widespread degradation of myelin and resulting in neurological deficits. Recent advances in molecular and atomic imaging provide the means to probe the microenvironment in affected brain tissues at an unprecedented level of detail and may provide new insights. This study showcases state-of-the-art spectroscopic and mass spectrometric techniques to compare distributions of molecular and atomic entities in MS lesions and surrounding brain tissues. MS brains underwent post-mortem magnetic resonance imaging (MRI) to locate and subsequently dissect MS lesions and surrounding white matter. Digests of lesions and unaffected white matter were analysed via ICP-MS/MS revealing significant differences in concentrations of Li, Mg, P, K, Mn, V, Rb, Ag, Gd and Bi. Micro x-ray fluorescence spectroscopy (µXRF) and laser ablation - inductively coupled plasma - time of flight - mass spectrometry (LA-ICP-ToF-MS) were used as micro-analytical imaging techniques to study distributions of both endogenous and xenobiotic elements. The essential trace elements Fe, Cu and Zn were subsequently calibrated using in-house manufactured gelatine standards. Lipid distributions were studied using IR-micro spectroscopy and matrix assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI). MALDI-MSI was complemented with high-resolution tandem mass spectrometry and trapped ion mobility spectroscopy for the annotation of specified phospho- and sphingolipids, revealing specific lipid species decreased in MS lesions compared to surrounding white matter. This explorative study demonstrated that modern molecular and atomic mapping techniques provide high-resolution imaging for relevant bio-indicative entities which may complement our current understanding of the underlying pathophysiological processes.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Encéfalo/diagnóstico por imagem , Lipídeos
6.
Nutrients ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571246

RESUMO

Vitamin D (VD) is the most discussed antioxidant supplement for multiple sclerosis (MS) patients and many studies suggest correlations between a low VD serum level and onset and progression of the disease. While many studies in animals as well as clinical studies focused on the role of VD in the relapsing-remitting MS, knowledge is rather sparse for the progressive phase of the disease and the development of cortical pathology. In this study, we used our established rat model of cortical inflammatory demyelination, resembling features seen in late progressive MS, to address the question about whether VD could have positive effects on reducing cortical pathology, oxidative stress, and neurofilament light chain (NfL) serum levels. For this purpose, we used male Dark Agouti (DA) rats, with one group being supplemented with VD (400 IE per week; VD+) from the weaning on at age three weeks; the other group received standard rodent food. The rat brains were assessed using immunohistochemical markers against demyelination, microglial activation, apoptosis, neurons, neurofilament, and reactive astrocytes. To evaluate the effect of VD on oxidative stress and the antioxidant capacity, we used two different oxidized lipid markers (anti- Cu++ and HOCl oxidized LDL antibodies) along with colorimetric methods for protective polyphenols (PP) and total antioxidative capacity (TAC). NfL serum levels of VD+ and VD- animals were analyzed by fourth generation single-molecule array (SIMOA) analysis. We found significant differences between the VD+ and VD- animals both in histopathology as well as in all serum markers. Myelin loss and microglial activation is lower in VD+ animals and the number of apoptotic cells is significantly reduced with a higher neuronal survival. VD+ animals show significantly lower NfL serum levels, a higher TAC, and more PP. Additionally, there is a significant reduction of oxidized lipid markers in animals under VD supplementation. Our data thus show a positive effect of VD on cellular features of cortical pathology in our animal model, presumably due to protection against reactive oxygen species. In this study, VD enhanced remyelination and prevented neuroaxonal and oxidative damage, such as demyelination and neurodegeneration. However, more studies on VD dose relations are required to establish an optimal response while avoiding overdosing.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Masculino , Ratos , Animais , Vitamina D , Antioxidantes/farmacologia , Esclerose Múltipla/tratamento farmacológico , Vitaminas/farmacologia , Vitaminas/uso terapêutico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Modelos Animais
7.
Front Neurol ; 12: 757795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744990

RESUMO

Multiple sclerosis is a multifactorial disease of the central nervous system with both genetic and environmental causes. The exact disease mechanisms are still unclear. Consequently, studies of possible treatment and preventive measures cover a large setting of heterogeneous approaches. Vitamin D is one of these approaches, and in many trials the relation of vitamin D serum levels and multiple sclerosis disease risk and activity describes different effects with sometimes inconsistent findings. Animal models are substantial for the research of disease mechanisms, and many of the drugs that are currently in use in multiple sclerosis have been developed, tested, or validated via animal studies. Especially when clinical studies show contradicting findings, the use of standardized settings and information about the mechanistic background is necessary. For this purpose, animal models are an essential tool. There is a variety of different experimental settings and types of animal models available, each of them with own strengths but also weaknesses. This mini-review aims to overview results of vitamin D studies in different animal models and sums up the most important recent findings.

8.
J Vis Exp ; (175)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34633360

RESUMO

Multiple sclerosis (MS) is the most common immune-mediated disease of the central nervous system (CNS) and progressively leads to physical disability and death, caused by white matter lesions in the spinal cord and cerebellum, as well as by demyelination in grey matter. Whilst conventional models of experimental allergic encephalomyelitis are suitable for the investigation of the cell-mediated inflammation in the spinal and cerebellar white matter, they fail to address grey matter pathologies. Here, we present the experimental protocol for a novel rat model of cortical demyelination allowing the investigation of the pathological and molecular mechanisms leading to cortical lesions. The demyelination is induced by an immunization with low-dose myelin oligodendrocyte glycoprotein (MOG) in an incomplete Freund's adjuvant followed by a catheter-mediated intracerebral delivery of pro-inflammatory cytokines. The catheter, moreover, enables multiple rounds of demyelination without causing injection-induced trauma, as well as the intracerebral delivery of potential therapeutic drugs undergoing a preclinical investigation. The method is also ethically favorable as animal pain and distress or disability are controlled and relatively minimal. The expected timeframe for the implementation of the entire protocol is around 8 - 10 weeks.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Córtex Cerebral/metabolismo , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/induzido quimicamente , Glicoproteína Mielina-Oligodendrócito , Ratos
9.
Front Neurol ; 11: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117004

RESUMO

Anti-myelin oligodendrocyte glycoprotein (MOG) antibodies (MOG-Abs) are commonly associated with clinical presentations as acute disseminated encephalomyelitis (ADEM) in both adults and children and anti-aquaporin 4 antibody-seronegative neuromyelitis optica spectrum disorder (NMOSD) and related syndromes such as optic neuritis, myelitis, and brainstem encephalitis. Most often, the presence of MOG-Abs is associated with a more benign clinical course and a good response to steroids. Here, we present a case report of a previously healthy 52-year-old female patient with fulminant demyelinating encephalitis, leading to death within a week after the first presenting symptoms from a massive brain edema irresponsive to high-dose intravenous steroids as well as osmotic therapy. The final diagnosis was only made postmortem after serum anti-MOG-Abs results were available. Histopathological analysis of the brain revealed extensive, predominantly cortical demyelinating lesions in the frontal, temporal, and parietal lobes with intracortical, leukocortical, and subpial plaques, associated with pronounced perivenous deposition of activated complement complex as well as features of acute MS characterized by destructive lesions.

10.
Front Neurol ; 11: 600401, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304315

RESUMO

An increasing body of evidence associates low vitamin D levels with increased risk of multiple sclerosis (MS), suggesting the possibility of a gene-environment interaction for this environmental factor in MS pathogenesis. Moreover, it has been shown that vitamin D downregulates major histocompatibility complex (MHC) class II expression in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We here report about the impact of a dietary vitamin D supplementation on EAE in the rat strains having functionally relevant allelic variations in the CIITA (Mhc2ta) gene, a master regulator of MHC class II expression. Full length myelin oligodendrocyte glycoprotein (MOG)-EAE was induced in DA.PVGav1-Vra4 congenic rats harboring the Vra4 locus from PVG strain in the EAE- susceptible DA background, and compared to the parental strains. The congenic rats fed with either vitamin D supplemented, deprived or regular diet developed an intermediate clinical EAE phenotype, in contrast to DA and PVG strains. Immunopathological studies revealed vitamin D dose-dependent effect on demyelination and inflammatory infiltration of the central nervous system (CNS), expression of MHC class II and CIITA, as well as downregulation of a range of pro-inflammatory genes. Taken together, our findings demonstrate an impact of vitamin D on the target tissue pathology and peripheral immune response during EAE in DA.PVGav1-Vra4 congenic strain. Thereby, our data provide evidence of a modulatory effect of vitamin D in context of genetic variances in the Vra4 locus/Mhc2ta gene in MS-like neuroinflammation, with potential relevance for the human demyelinating disease.

11.
Exp Neurol ; 294: 32-44, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28457906

RESUMO

Cortical demyelination is a common finding in patients with chronic multiple sclerosis (MS) and contributes to disease progression and overall disability. The exact pathomechanism that leads to cortical lesions is not clear. Research is limited by the fact that standard animal models of multiple sclerosis do not commonly affect the cortex, or if they do in some variants, the cortical demyelination is rather sparse and already remyelinated within a few days. In an attempt to overcome these limitations we implanted a tissue-compatible catheter into the cortex of Dark Agouti rats. After 14days the rats were immunized with 5µg myelin oligodendrocyte glycoprotein (MOG) in incomplete Freund's Adjuvant, which did not cause any clinical signs but animals developed a stable anti-MOG antibody titer. Then the animals received an injection of proinflammatory cytokines through the catheter. This led to a demyelination of cortical and subcortical areas starting from day 1 in a cone-like pattern spreading from the catheter area towards the subarachnoid space. On day 3 cortical demyelination already expanded to the contralateral hemisphere and reached its peak between days 9-15 after cytokine injection with a widespread demyelination of cortical and subcortical areas of both hemispheres. Clinically the animals showed only discrete signs of fatigue and recovered completely after day 15. Even on day 30 we still were able to detect demyelination in subpial and intracortical areas along with areas of partial and complete remyelination. Loss of cortical myelin was accompanied with marked microglia activation. A second injection of cytokines through the catheter on day 30 led to a second demyelination phase with the same symptoms, but again no detectable motor dysfunction. Suffering of the animals appeared minor compared to standard Experimental Autoimmune Encephalomyelitis and therefore, even long-term observation and repeated demyelination phases seem ethically acceptable.


Assuntos
Córtex Cerebral/patologia , Citocinas/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/patologia , Lateralidade Funcional/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/imunologia , Fibrina/metabolismo , Adjuvante de Freund/efeitos adversos , Lateralidade Funcional/efeitos dos fármacos , Imunização/efeitos adversos , Lipídeos/efeitos adversos , Masculino , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Atividade Motora , Proteína Proteolipídica de Mielina/metabolismo , Glicoproteína Associada a Mielina/efeitos adversos , Glicoproteína Associada a Mielina/sangue , Proteínas do Tecido Nervoso/metabolismo , Ratos , Estatísticas não Paramétricas
12.
PLoS One ; 11(5): e0154797, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27152948

RESUMO

OBJECTIVES: From previous data in animal models of cerebral ischemia, lipocalin-2 (LCN2), a protein related to neutrophil function and cellular iron homeostasis, is supposed to have a value as a biomarker in ischemic stroke patients. Therefore, we examined LCN2 expression in the ischemic brain in an animal model and measured plasma levels of LCN2 in ischemic stroke patients. METHODS: In the mouse model of transient middle cerebral artery occlusion (tMCAO), LCN2 expression in the brain was analyzed by immunohistochemistry and correlated to cellular nonheme iron deposition up to 42 days after tMCAO. In human stroke patients, plasma levels of LCN2 were determined one week after ischemic stroke. In addition to established predictive parameters such as age, National Institutes of Health Stroke Scale and thrombolytic therapy, LCN2 was included into linear logistic regression modeling to predict clinical outcome at 90 days after stroke. RESULTS: Immunohistochemistry revealed expression of LCN2 in the mouse brain already at one day following tMCAO, and the amount of LCN2 subsequently increased with a maximum at 2 weeks after tMCAO. Accumulation of cellular nonheme iron was detectable one week post tMCAO and continued to increase. In ischemic stroke patients, higher plasma levels of LCN2 were associated with a worse clinical outcome at 90 days and with the occurrence of post-stroke infections. CONCLUSIONS: LCN2 is expressed in the ischemic brain after temporary experimental ischemia and paralleled by the accumulation of cellular nonheme iron. Plasma levels of LCN2 measured in patients one week after ischemic stroke contribute to the prediction of clinical outcome at 90 days and reflect the systemic response to post-stroke infections.


Assuntos
Biomarcadores/metabolismo , Isquemia Encefálica/metabolismo , Lipocalina-2/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL
13.
PLoS One ; 9(1): e85393, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465550

RESUMO

UNLABELLED: Neurofascin was recently reported as a target for axopathic autoantibodies in patients with multiple sclerosis (MS), a response that will exacerbate axonal pathology and disease severity in an animal model of multiple sclerosis. As transplacental transfer of maternal autoantibodies can permanently damage the developing nervous system we investigated whether intrauterine exposure to this neurofascin-specific response had any detrimental effect on white matter tract development. To address this question we intravenously injected pregnant rats with either a pathogenic anti-neurofascin monoclonal antibody or an appropriate isotype control on days 15 and 18 of pregnancy, respectively, to mimic the physiological concentration of maternal antibodies in the circulation of the fetus towards the end of pregnancy. Pups were monitored daily with respect to litter size, birth weight, growth and motor development. Histological studies were performed on E20 embryos and pups sacrificed on days 2, 10, 21, 32 and 45 days post partum. RESULTS: Immunohistochemistry for light and confocal microscopy confirmed passively transferred anti-neurofascin antibody had crossed the placenta to bind to distinct structures in the developing cortex and cerebellum. However, this did not result in any significant differences in litter size, birth weight, or general physical development between litters from control mothers or those treated with the neurofascin-specific antibody. Histological analysis also failed to identify any neuronal or white matter tract abnormalities induced by the neurofascin-specific antibody. CONCLUSIONS: We show that transplacental transfer of circulating anti-neurofascin antibodies can occur and targets specific structures in the CNS of the developing fetus. However, this did not result in any pre- or post-natal abnormalities in the offspring of the treated mothers. These results assure that even if anti-neurofascin responses are detected in pregnant women with multiple sclerosis these are unlikely to have a negative effect on their children.


Assuntos
Autoanticorpos/metabolismo , Autoanticorpos/farmacologia , Moléculas de Adesão Celular/antagonistas & inibidores , Desenvolvimento Fetal/efeitos dos fármacos , Fatores de Crescimento Neural/antagonistas & inibidores , Sistema Nervoso/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/embriologia , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA