Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 145(22): 224503, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27984900

RESUMO

Rotation of methylammonium (CH3NH3 or MA) molecules is believed to govern the excellent transport properties of photocarriers in the MA lead iodide (MAPbI3) perovskite. Of particular interest is its cubic phase, which exists in industrially important films at room temperature. In order to investigate the rotational behaviors of the MA molecules, we have performed ab initio molecular dynamics simulations of cubic-MAPbI3 at room temperature. There are two types of rotational motions of MA molecules in a crystalline PbI3 cage: reorientation of a whole molecule and intramolecular rotation around the C-N bond within MA molecules. Using a cubic symmetry-assisted analysis (CSAA), we found that the prominent orientation of the C-N bond is the crystalline ⟨110⟩ directions, rather than the ⟨100⟩ and ⟨111⟩ directions. Rapid rotation around the C-N bond is also observed, which easily occurs when the rotational axis is parallel to the ⟨110⟩ directions according to the CSAA. To explain the atomistic mechanisms underlying these CSAA results, we have focused on the relation between H-I hydrogen bonds and the orientation of an MA molecule. Here, the hydrogen bonds were defined by population analysis, and it has been found that, while H atoms in the CH3 group (HC) hardly interacts with I atoms, those in the NH3 group (HN) form at least one hydrogen bond with I atoms and their interatomic distances are in a wide range, 2.2-3.7 Å. Based on these findings, we have given a possible explanation to why the ⟨110⟩ directions are preferred. Namely, the atomic arrangement and interatomic distance between MA and surrounding I atoms are most suitable for the formation of hydrogen bonds. In addition to films, these results are potentially applicable to the rotational behaviors in bulk MAPbI3 as well, considering that the atomistic structure and time constants regarding the rotation of MA molecules statistically agree with bulk experiments.

2.
J Am Chem Soc ; 133(23): 8846-9, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21595472

RESUMO

Although various reactions involved in photoexcited states of polypyridyl ruthenium(II) complexes have been extensively studied, photoisomerization of the complexes is very rare. We report the first illustration of stoichiometric photoisomerization of trans-[Ru(tpy)(pynp)OH(2)](2+) (1a) [tpy = 2,2':6',2''-terpyridine; pynp = 2-(2-pyridyl)-1,8-naphthyridine] to cis-[Ru(tpy)(pynp)OH(2)](2+) (1a') and the isolation of 1a and 1a' for X-ray crystallographic analysis. Polypyridyl ruthenium(II) aquo complexes are attracting much attention related to proton-coupled electron transfer and water oxidation catalysis. We demonstrate that the photoisomerization significantly controls the redox reactions and water oxidation catalyses involving the ruthenium(II) aquo complexes 1a and 1a'.

3.
Sci Rep ; 6: 19599, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26781627

RESUMO

Organometal halide perovskites are attracting great attention as promising material for solar cells because of their high power conversion efficiency. The high performance has been attributed to the existence of free charge carriers and their large diffusion lengths, but the nature of carrier transport at the atomistic level remains elusive. Here, nonadiabatic quantum molecular dynamics simulations elucidate the mechanisms underlying the excellent free-carrier transport in CH3NH3PbI3. Pb and I sublattices act as disjunct pathways for rapid and balanced transport of photoexcited electrons and holes, respectively, while minimizing efficiency-degrading charge recombination. On the other hand, CH3NH3 sublattice quickly screens out electrostatic electron-hole attraction to generate free carriers within 1 ps. Together this nano-architecture lets photoexcited electrons and holes dissociate instantaneously and travel far away to be harvested before dissipated as heat. This work provides much needed structure-property relationships and time-resolved information that potentially lead to rational design of efficient solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA