Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Virol ; 90(11): 5219-5230, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26962225

RESUMO

UNLABELLED: The adeno-associated viruses (AAVs), which are being developed as gene delivery vectors, display differential cell surface glycan binding and subsequent tissue tropisms. For AAV serotype 1 (AAV1), the first viral vector approved as a gene therapy treatment, and its closely related AAV6, sialic acid (SIA) serves as their primary cellular surface receptor. Toward characterizing the SIA binding site(s), the structure of the AAV1-SIA complex was determined by X-ray crystallography to 3.0 Å. Density consistent with SIA was observed in a pocket located at the base of capsid protrusions surrounding icosahedral 3-fold axes. Site-directed mutagenesis substitution of the amino acids forming this pocket with structurally equivalent residues from AAV2, a heparan sulfate binding serotype, followed by cell binding and transduction assays, further mapped the critical residues conferring SIA binding to AAV1 and AAV6. For both viruses five of the six binding pocket residues mutated (N447S, V473D, N500E, T502S, and W503A) abolished SIA binding, whereas S472R increased binding. All six mutations abolished or decreased transduction by at least 50% in AAV1. Surprisingly, the T502S substitution did not affect transduction efficiency of wild-type AAV6. Furthermore, three of the AAV1 SIA binding site mutants-S472R, V473D, and N500E-escaped recognition by the anti-AAV1 capsid antibody ADK1a. These observations demonstrate that common key capsid surface residues dictate both virus binding and entry processes, as well as antigenic reactivity. This study identifies an important functional capsid surface "hot spot" dictating receptor attachment, transduction efficiency, and antigenicity which could prove useful for vector engineering. IMPORTANCE: The adeno-associated virus (AAV) vector gene delivery system has shown promise in several clinical trials and an AAV1-based vector has been approved as the first gene therapy treatment. However, limitations still exist with respect to transduction efficiency and the detrimental effects of preexisting host antibodies. This study aimed to identify key capsid regions which can be engineered to overcome these limitations. A sialic glycan receptor recognition pocket was identified in AAV1 and its closely related AAV6, using X-ray crystallography. The site was confirmed by mutagenesis followed by cell binding and transduction assays. Significantly, residues controlling gene expression efficiency, as well as antibody escape variants, were also identified. This study thus provides, at the amino acid level, information for rational structural engineering of AAV vectors with improved therapeutic efficacy.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/química , Dependovirus/química , Ácido N-Acetilneuramínico/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Substituição de Aminoácidos/genética , Sítios de Ligação , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Cristalografia por Raios X , Dependovirus/genética , Vetores Genéticos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ácido N-Acetilneuramínico/química , Ligação Proteica , Receptores Virais/química , Transdução Genética
2.
J Virol ; 89(3): 1660-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410855

RESUMO

UNLABELLED: As a genus, the dependoviruses use a diverse group of cell surface carbohydrates for attachment and entry. Despite the fact that a majority of adeno-associated viruses (AAVs) utilize sialic acid (SIA) for binding and transduction, this virus-carbohydrate interaction is poorly understood. Utilizing X-ray crystallography, two SIA binding regions were mapped for AAV5. The first site mapped to the depression in the center of the 3-fold axis of symmetry, while the second site was located under the ßHI loop close to the 5-fold axis. Mutagenesis of amino acids 569 and 585 or 587 within the 3-fold depression resulted in elimination or alteration in SIA-dependent transduction, respectively. This change in SIA binding was confirmed using glycan microarrays. Mutagenesis of the second site identified a role in transduction that was SIA independent. Further studies of the mutants at the 3-fold site demonstrated a change in transduction activity and cell tropism in vivo as well as resistance to neutralization by a polyclonal antibody raised against the wild-type virus. IMPORTANCE: Despite the fact that a majority of AAVs utilize sialic acid for binding and transduction, this virus-carbohydrate interaction is poorly understood. Utilizing X-ray crystallography, the sialic acid binding regions of AAV5 were identified and studied using a variety of approaches. Mutagenesis of this region resulted in elimination or alteration in sialic acid-dependent transduction in cell lines. This change in sialic acid glycan binding was confirmed using glycan arrays. Further study also demonstrated a change in transduction and activity and cell tropism in vivo as well as resistance to neutralization by antibodies raised against the wild-type virus.


Assuntos
Proteínas do Capsídeo/metabolismo , Dependovirus/fisiologia , Ácido N-Acetilneuramínico/metabolismo , Ligação Viral , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Linhagem Celular , Cristalografia por Raios X , Análise Mutacional de DNA , Dependovirus/química , Dependovirus/genética , Dependovirus/imunologia , Humanos , Modelos Moleculares , Mutagênese , Transdução Genética , Tropismo Viral
3.
J Virol ; 89(5): 2603-14, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25520501

RESUMO

UNLABELLED: Bovine parvovirus (BPV), the causative agent of respiratory and gastrointestinal disease in cows, is the type member of the Bocaparvovirus genus of the Parvoviridae family. Toward efforts to obtain a template for the development of vaccines and small-molecule inhibitors for this pathogen, the structure of the BPV capsid, assembled from the major capsid viral protein 2 (VP2), was determined using X-ray crystallography as well as cryo-electron microscopy and three-dimensional image reconstruction (cryo-reconstruction) to 3.2- and 8.8-Å resolutions, respectively. The VP2 region ordered in the crystal structure, from residues 39 to 536, conserves the parvoviral eight-stranded jellyroll motif and an αA helix. The BPV capsid displays common parvovirus features: a channel at and depressions surrounding the 5-fold axes and protrusions surrounding the 3-fold axes. However, rather than a depression centered at the 2-fold axes, a raised surface loop divides this feature in BPV. Additional observed density in the capsid interior in the cryo-reconstructed map, compared to the crystal structure, is interpreted as 10 additional N-terminal residues, residues 29 to 38, that radially extend the channel under the 5-fold axis, as observed for human bocavirus 1 (HBoV1). Surface loops of various lengths and conformations extend from the core jellyroll motif of VP2. These loops confer the unique surface topology of the BPV capsid, making it strikingly different from HBoV1 as well as the type members of other Parvovirinae genera for which structures have been determined. For the type members, regions structurally analogous to those decorating the BPV capsid surface serve as determinants of receptor recognition, tissue and host tropism, pathogenicity, and antigenicity. IMPORTANCE: Bovine parvovirus (BPV), identified in the 1960s in diarrheic calves, is the type member of the Bocaparvovirus genus of the nonenveloped, single-stranded DNA (ssDNA) Parvoviridae family. The recent isolation of human bocaparvoviruses from children with severe respiratory and gastrointestinal infections has generated interest in understanding the life cycle and pathogenesis of these emerging viruses. We have determined the high-resolution structure of the BPV capsid assembled from its predominant capsid protein VP2, known to be involved in a myriad of functions during host cell entry, pathogenesis, and antigenicity for other members of the Parvovirinae. Our results show the conservation of the core secondary structural elements and the location of the N-terminal residues for the known bocaparvovirus capsid structures. However, surface loops with high variability in sequence and conformation give BPV a unique capsid surface topology. Similar analogous regions in other Parvovirinae type members are important as determinants of receptor recognition, tissue and host tropism, pathogenicity, and antigenicity.


Assuntos
Bocavirus/química , Bocavirus/ultraestrutura , Capsídeo/química , Capsídeo/ultraestrutura , Animais , Bovinos , Microscopia Crioeletrônica , Cristalografia por Raios X , Imageamento Tridimensional
4.
J Struct Biol ; 192(1): 21-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26334681

RESUMO

Adeno-associated virus rhesus isolate 8 (AAVrh.8) is a leading vector for the treatment of neurological diseases due to its efficient transduction of neuronal cells and reduced peripheral tissue tropism. Toward identification of the capsid determinants for these properties, the structure of AAVrh.8 was determined by X-ray crystallography to 3.5 Å resolution and compared to those of other AAV isolates. The capsid viral protein (VP) structure consists of an αA helix and an eight-stranded anti-parallel ß-barrel core conserved in parvoviruses, and large insertion loop regions between the ß-strands form the capsid surface topology. The AAVrh.8 capsid exhibits the surface topology conserved in all AAVs: depressions at the icosahedral twofold axis and surrounding the cylindrical channel at the fivefold axis, and three protrusions around the threefold axis. A structural comparison to serotypes AAV2, AAV8, and AAV9, to which AAVrh.8 shares ∼ 84%, ∼ 91%, and ∼ 87% VP sequence identity, respectively, revealed differences in the surface loops known to affect receptor binding, transduction efficiency, and antigenicity. Consistent with this observation, biochemical assays showed that AAVrh.8 is unable to bind heparin and does not cross-react with conformational monoclonal antibodies and human donor serum directed against the other AAVs compared. This structure of AAVrh.8 thus identified capsid surface differences which can serve as template regions for rational design of vectors with enhanced transduction for specific tissues and escape pre-existing antibody recognition. These features are essential for the creation of an AAV vector toolkit that is amenable to personalized disease treatment.


Assuntos
Proteínas do Capsídeo/química , Dependovirus/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Proteínas do Capsídeo/ultraestrutura , Cristalografia por Raios X , Vetores Genéticos/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Vírion/ultraestrutura
5.
J Virol ; 87(9): 5128-40, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23449783

RESUMO

The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel ß-barrel with large loop regions between the strands. The ß-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors.


Assuntos
Capsídeo/química , Parvovirus H-1/química , Vírion/química , Sequência de Aminoácidos , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X , Parvovirus H-1/genética , Parvovirus H-1/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Vírion/genética , Vírion/metabolismo
6.
J Virol ; 87(20): 11187-99, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926356

RESUMO

The adeno-associated viruses (AAVs) display differential cell binding, transduction, and antigenic characteristics specified by their capsid viral protein (VP) composition. Toward structure-function annotation, the crystal structure of AAV5, one of the most sequence diverse AAV serotypes, was determined to 3.45-Å resolution. The AAV5 VP and capsid conserve topological features previously described for other AAVs but uniquely differ in the surface-exposed HI loop between ßH and ßI of the core ß-barrel motif and have pronounced conformational differences in two of the AAV surface variable regions (VRs), VR-IV and VR-VII. The HI loop is structurally conserved in other AAVs despite amino acid differences but is smaller in AAV5 due to an amino acid deletion. This HI loop is adjacent to VR-VII, which is largest in AAV5. The VR-IV, which forms the larger outermost finger-like loop contributing to the protrusions surrounding the icosahedral 3-fold axes of the AAVs, is shorter in AAV5, creating a smoother capsid surface topology. The HI loop plays a role in AAV capsid assembly and genome packaging, and VR-IV and VR-VII are associated with transduction and antigenic differences, respectively, between the AAVs. A comparison of interior capsid surface charge and volume of AAV5 to AAV2 and AAV4 showed a higher propensity of acidic residues but similar volumes, consistent with comparable DNA packaging capacities. This structure provided a three-dimensional (3D) template for functional annotation of the AAV5 capsid with respect to regions that confer assembly efficiency, dictate cellular transduction phenotypes, and control antigenicity.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Dependovirus/química , Dependovirus/ultraestrutura , Cristalografia por Raios X , Eletroquímica , Modelos Moleculares , Conformação Proteica
7.
J Biol Chem ; 287(53): 44784-99, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23115247

RESUMO

Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens.


Assuntos
Biomarcadores/química , Glicômica , Leite Humano/química , Polissacarídeos/química , Receptores Virais/análise , Animais , Sequência de Carboidratos , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Humanos , Camundongos , Leite Humano/metabolismo , Dados de Sequência Molecular , Polissacarídeos/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
8.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 12): 1571-6, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23192051

RESUMO

Crystals of H-1 Parvovirus (H-1PV), an antitumor gene-delivery vector, were obtained for DNA-containing capsids and diffracted X-rays to 2.7 Šresolution using synchrotron radiation. The crystals belonged to the monoclinic space group P2(1), with unit-cell parameters a=255.4, b=350.4, c=271.6 Å, ß=90.34°. The unit cell contained two capsids, with one capsid per crystallographic asymmetric unit. The H-1PV structure has been determined by molecular replacement and is currently being refined.


Assuntos
Parvovirus H-1/química , Proteínas do Capsídeo/química , Cristalização , Cristalografia por Raios X , Parvovirus H-1/isolamento & purificação , Difração de Raios X
9.
Mol Cell Endocrinol ; 295(1-2): 1-9, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-18801410

RESUMO

The present work describes the identification of (anti)progestin endocrine disrupting chemicals (EDC) using a two step screening system. In the first step a competitive binding assay was developed using recombinant human progesterone receptor (hPR). The tested chemicals were of various classes like insecticides, their metabolites, industrial chemicals and waste water treatment plant (WWTP) effluents. All the tested chemicals demonstrated a high affinity binding for hPR. The average IC50 values of the test chemicals were within the range of 1-25microM. In the second step of screening, a mammalian cell-based hPR transactivation assay was developed where HEK 293 cells were co-transfected with hPR and luciferase reporter gene under the control of progesterone-response element. Stimulation of the cells with progesterone resulted in about 25-fold up regulation of luciferase activity, with EC50 value of 4nM. Potent anti-progesterone, RU486, significantly inhibited progesterone-induced transactivation and non-progestagenic steroids failed to transactivate hPR till 1microM concentrations. The chemicals showing high binding affinities in competitive binding assays were then tested in transactivation assay and all of them were found to be anti-progestative except WWTP effluents. Transactivation assays using extracted water samples from five different WWTP effluents showed that it was rich in progestative compounds. The levels of induction caused by these effluents were in the range of 15-25% of induction by progesterone and they represented about 6ng/l equivalent progesterone activities. In conclusion, we demonstrated that this two step assay provides an efficient screening tool for the detection of (anti)progestative EDC in various samples.


Assuntos
Bioensaio , Disruptores Endócrinos/farmacologia , Antagonistas de Hormônios/farmacologia , Progestinas/farmacologia , Receptores de Progesterona/efeitos dos fármacos , Elementos de Resposta/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia , Ligação Competitiva , Linhagem Celular , Relação Dose-Resposta a Droga , Disruptores Endócrinos/metabolismo , Monitoramento Ambiental , Genes Reporter , Antagonistas de Hormônios/metabolismo , Humanos , Progesterona/metabolismo , Progestinas/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Proteínas Recombinantes/metabolismo , Transfecção , Poluentes Químicos da Água/metabolismo
10.
Viruses ; 9(11)2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084163

RESUMO

LuIII, a protoparvovirus pathogenic to rodents, replicates in human mitotic cells, making it applicable for use to kill cancer cells. This virus group includes H-1 parvovirus (H-1PV) and minute virus of mice (MVM). However, LuIII displays enhanced oncolysis compared to H-1PV and MVM, a phenotype mapped to the major capsid viral protein 2 (VP2). This suggests that within LuIII VP2 are determinants for improved tumor lysis. To investigate this, the structure of the LuIII virus-like-particle was determined using single particle cryo-electron microscopy and image reconstruction to 3.17 Å resolution, and compared to the H-1PV and MVM structures. The LuIII VP2 structure, ordered from residue 37 to 587 (C-terminal), had the conserved VP topology and capsid morphology previously reported for other protoparvoviruses. This includes a core ß-barrel and α-helix A, a depression at the icosahedral 2-fold and surrounding the 5-fold axes, and a single protrusion at the 3-fold axes. Comparative analysis identified surface loop differences among LuIII, H-1PV, and MVM at or close to the capsid 2- and 5-fold symmetry axes, and the shoulder of the 3-fold protrusions. The 2-fold differences cluster near the previously identified MVM sialic acid receptor binding pocket, and revealed potential determinants of protoparvovirus tumor tropism.


Assuntos
Vírus Oncolíticos/química , Vírus Oncolíticos/ultraestrutura , Parvovirus/química , Parvovirus/ultraestrutura , Animais , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Microscopia Crioeletrônica/métodos , Parvovirus H-1/química , Parvovirus H-1/ultraestrutura , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Camundongos , Vírus Miúdo do Camundongo/química , Vírus Miúdo do Camundongo/ultraestrutura , Modelos Moleculares
11.
Curr Opin Virol ; 7: 108-18, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25047752

RESUMO

Members of the Parvoviridae utilize glycan receptors for cellular attachment and subsequent interactions determine transduction efficiency or pathogenic outcome. This review focuses on the identity of the glycan receptors utilized, their capsid binding footprints, and a discussion of the overlap of these sites with tropism, transduction, and pathogenicity determinants. Despite high sequence diversity between the different genera, most parvoviruses bind to negatively charged glycans, such as sialic acid and heparan sulfate, abundant on cell surface membranes. The capsid structure of these viruses exhibit high structural homology enabling common regions to be utilized for glycan binding. At the same time the sequence diversity at the common footprints allows for binding of different glycans or differential binding of the same glycan.


Assuntos
Infecções por Parvoviridae/metabolismo , Parvovirus/metabolismo , Polissacarídeos/metabolismo , Receptores Virais/metabolismo , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Humanos , Infecções por Parvoviridae/virologia , Parvovirus/genética
12.
PLoS One ; 9(1): e86909, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475195

RESUMO

The recognition of sialic acids by two strains of minute virus of mice (MVM), MVMp (prototype) and MVMi (immunosuppressive), is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA) capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM). Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galß1-4GlcNAc motif (Neu5Acα2-3Galß1-4GlcNAc or 3'SIA-LN) and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3'SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3'SIA-Le(X) identified in a previous glycan microarray screen.


Assuntos
Camundongos/virologia , Vírus Miúdo do Camundongo/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Animais , Capsídeo/metabolismo , Linhagem Celular , Fibroblastos , Humanos , Linfócitos , Análise em Microsséries , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA