Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 592(7854): 444-449, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33762736

RESUMO

Nonalcoholic steatohepatitis (NASH) is a manifestation of systemic metabolic disease related to obesity, and causes liver disease and cancer1,2. The accumulation of metabolites leads to cell stress and inflammation in the liver3, but mechanistic understandings of liver damage in NASH are incomplete. Here, using a preclinical mouse model that displays key features of human NASH (hereafter, NASH mice), we found an indispensable role for T cells in liver immunopathology. We detected the hepatic accumulation of CD8 T cells with phenotypes that combined tissue residency (CXCR6) with effector (granzyme) and exhaustion (PD1) characteristics. Liver CXCR6+ CD8 T cells were characterized by low activity of the FOXO1 transcription factor, and were abundant in NASH mice and in patients with NASH. Mechanistically, IL-15 induced FOXO1 downregulation and CXCR6 upregulation, which together rendered liver-resident CXCR6+ CD8 T cells susceptible to metabolic stimuli (including acetate and extracellular ATP) and collectively triggered auto-aggression. CXCR6+ CD8 T cells from the livers of NASH mice or of patients with NASH had similar transcriptional signatures, and showed auto-aggressive killing of cells in an MHC-class-I-independent fashion after signalling through P2X7 purinergic receptors. This killing by auto-aggressive CD8 T cells fundamentally differed from that by antigen-specific cells, which mechanistically distinguishes auto-aggressive and protective T cell immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Fígado/imunologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores CXCR6/imunologia , Acetatos/farmacologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Interleucina-15/imunologia , Interleucina-15/farmacologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Arch Toxicol ; 98(7): 1967-1973, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806718

RESUMO

Since 2006, the responsible regulatory bodies have proposed five health-based guidance values (HBGV) for bisphenol A (BPA) that differ by a factor of 250,000. This range of HBGVs covers a considerable part of the range from highly toxic to relatively non-toxic substances. As such heterogeneity of regulatory opinions is a challenge not only for scientific risk assessment but also for all stakeholders, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) analyzed the reasons for the current discrepancy and used this example to suggest improvements for the process of HBGV recommendations. A key aspect for deriving a HBGV is the selection of appropriate studies that allow the identification of a point of departure (PoD) for risk assessment. In the case of BPA, the HBGV derived in the 2023 EFSA assessment was based on a study that reported an increase of Th17 cells in mice with a benchmark dose lower bound (BMDL40) of 0.53 µg/kg bw/day. However, this study does not comply with several criteria that are important for scientific risk assessment: (1) the selected end-point, Th17 cell frequency in the spleen of mice, is insufficiently understood with respect to health outcomes. (2) It is unclear, by which mechanism BPA may cause an increase in Th17 cell frequency. (3) It is unknown, if an increase of Th17 cell frequency in rodents is comparably observed in humans. (4) Toxicokinetics were not addressed. (5) Neither the raw data nor the experimental protocols are available. A further particularly important criterion (6) is independent data confirmation which is not available in the present case. Previous studies using other readouts did not observe immune-related adverse effects such as inflammation, even at doses orders of magnitude higher than in the Th17 cell-based study. The SKLM not only provides here key criteria for the use of such studies, but also suggests that the use of such a "checklist" requires a careful and comprehensive scientific judgement of each item. It is concluded that the Th17 cell-based study data do not represent an adequate basis for risk assessment of BPA.


Assuntos
Compostos Benzidrílicos , Fenóis , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Medição de Risco/métodos , Animais , Humanos , Camundongos , Relação Dose-Resposta a Droga , Guias como Assunto
3.
Arch Toxicol ; 98(6): 1573-1580, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573336

RESUMO

Dietary exposure to N-nitrosamines has recently been assessed by the European Food Safety Authority (EFSA) to result in margins of exposure that are conceived to indicate concern with respect to human health risk. However, evidence from more than half a century of international research shows that N-nitroso compounds (NOC) can also be formed endogenously. In this commentary of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG), the complex metabolic and physiological biokinetics network of nitrate, nitrite and reactive nitrogen species is discussed with emphasis on its influence on endogenous NOC formation. Pioneering approaches to monitor endogenous NOC have been based on steady-state levels of N-nitrosodimethylamine (NDMA) in human blood and on DNA adduct levels in blood cells. Further NOC have not been considered yet to a comparable extent, although their generation from endogenous or exogenous precursors is to be expected. The evidence available to date indicates that endogenous NDMA exposure could exceed dietary exposure by about 2-3 orders of magnitude. These findings require consolidation by refined toxicokinetics and DNA adduct monitoring data to achieve a credible and comprehensive human health risk assessment.


Assuntos
Adutos de DNA , Exposição Dietética , Dimetilnitrosamina , Nitrosaminas , Humanos , Medição de Risco , Nitrosaminas/toxicidade , Nitrosaminas/farmacocinética , Exposição Dietética/efeitos adversos , Dimetilnitrosamina/toxicidade , Contaminação de Alimentos , Inocuidade dos Alimentos , Animais , Nitritos/toxicidade , Nitratos/toxicidade , Nitratos/farmacocinética , Espécies Reativas de Nitrogênio/metabolismo
4.
Gut ; 72(7): 1258-1270, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37015754

RESUMO

OBJECTIVE: Helicobacter pylori infection is the most prevalent bacterial infection worldwide. Besides being the most important risk factor for gastric cancer development, epidemiological data show that infected individuals harbour a nearly twofold increased risk to develop colorectal cancer (CRC). However, a direct causal and functional connection between H. pylori infection and colon cancer is lacking. DESIGN: We infected two Apc-mutant mouse models and C57BL/6 mice with H. pylori and conducted a comprehensive analysis of H. pylori-induced changes in intestinal immune responses and epithelial signatures via flow cytometry, chip cytometry, immunohistochemistry and single cell RNA sequencing. Microbial signatures were characterised and evaluated in germ-free mice and via stool transfer experiments. RESULTS: H. pylori infection accelerated tumour development in Apc-mutant mice. We identified a unique H. pylori-driven immune alteration signature characterised by a reduction in regulatory T cells and pro-inflammatory T cells. Furthermore, in the intestinal and colonic epithelium, H. pylori induced pro-carcinogenic STAT3 signalling and a loss of goblet cells, changes that have been shown to contribute-in combination with pro-inflammatory and mucus degrading microbial signatures-to tumour development. Similar immune and epithelial alterations were found in human colon biopsies from H. pylori-infected patients. Housing of Apc-mutant mice under germ-free conditions ameliorated, and early antibiotic eradication of H. pylori infection normalised the tumour incidence to the level of uninfected controls. CONCLUSIONS: Our studies provide evidence that H. pylori infection is a strong causal promoter of colorectal carcinogenesis. Therefore, implementation of H. pylori status into preventive measures of CRC should be considered.


Assuntos
Neoplasias do Colo , Infecções por Helicobacter , Helicobacter pylori , Microbiota , Neoplasias Gástricas , Humanos , Camundongos , Animais , Helicobacter pylori/genética , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Camundongos Endogâmicos C57BL , Carcinogênese/patologia , Neoplasias Gástricas/patologia , Neoplasias do Colo/patologia , Muco , Mucosa Gástrica/patologia
5.
PLoS Comput Biol ; 18(5): e1010044, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35533202

RESUMO

Statistical analysis of microbial genomic data within epidemiological cohort studies holds the promise to assess the influence of environmental exposures on both the host and the host-associated microbiome. However, the observational character of prospective cohort data and the intricate characteristics of microbiome data make it challenging to discover causal associations between environment and microbiome. Here, we introduce a causal inference framework based on the Rubin Causal Model that can help scientists to investigate such environment-host microbiome relationships, to capitalize on existing, possibly powerful, test statistics, and test plausible sharp null hypotheses. Using data from the German KORA cohort study, we illustrate our framework by designing two hypothetical randomized experiments with interventions of (i) air pollution reduction and (ii) smoking prevention. We study the effects of these interventions on the human gut microbiome by testing shifts in microbial diversity, changes in individual microbial abundances, and microbial network wiring between groups of matched subjects via randomization-based inference. In the smoking prevention scenario, we identify a small interconnected group of taxa worth further scrutiny, including Christensenellaceae and Ruminococcaceae genera, that have been previously associated with blood metabolite changes. These findings demonstrate that our framework may uncover potentially causal links between environmental exposure and the gut microbiome from observational data. We anticipate the present statistical framework to be a good starting point for further discoveries on the role of the gut microbiome in environmental health.


Assuntos
Microbioma Gastrointestinal , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Microbioma Gastrointestinal/genética , Humanos , Estudos Prospectivos , Distribuição Aleatória
6.
Curr Opin Gastroenterol ; 38(2): 162-167, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35098938

RESUMO

PURPOSE OF REVIEW: Lipid metabolism presents a targetable metabolic vulnerability in colorectal cancer (CRC). Lipid signatures and cancer-cell lipid requirements may serve as noninvasive diagnostic and prognostic biomarkers and as a therapeutic target, respectively. RECENT FINDINGS: A growing body of new studies highlight the complexity of lipid metabolism in CRC. Cancer cells are able to utilize an alternative fatty acid desaturation pathway, underlining the metabolic plasticity of tumors. CRC tissue shows a robust triglyceride-species signature with prognostic value in CRC patients. Lipidomic analyses in germfree and colonized mice identify a unique lipid signature and suggest that bacteria inhibit metabolism of polyunsaturated fatty acids by blocking desaturase and elongase activities. Cellular stress responses, particularly the well characterized unfolded protein response, are involved in regulating lipid synthesis and homeostasis, and contribute to adaptation of the lipid environment. Together, lipid metabolism, the intestinal microbiota and cellular stress responses unarguably play crucial roles in CRC. SUMMARY: A number of recent advances in our understanding of dysregulated lipid metabolism in CRC underline the importance of this research field. An improved knowledge of the complex interplay between lipid metabolism, cellular stress and the intestinal microbiota in the context of CRC may lead to novel therapeutic strategies.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Animais , Bactérias , Neoplasias Colorretais/patologia , Ácidos Graxos Insaturados/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Metabolismo dos Lipídeos , Camundongos
7.
Curr Opin Gastroenterol ; 38(2): 146-155, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35098936

RESUMO

PURPOSE OF REVIEW: The purpose of this symposium was to bring thought leaders in the microbiome from the west to Africa to share their unique experiences with African investigators in order to build the foundations for scientifically rigorous explorations into the African human and environmental microbiome that may explain why disease patterns are different in Africa where the chief killers are infectious diseases, whereas noncommunicable diseases (NCDs) are the major threat to healthcare resources in the developed world. RECENT FINDINGS: The application of new high throughput technologies to the investigation of the microbiome and its metabolome has revealed mechanisms whereby a traditional African high fiber diet can suppress NCDs which include colon cancer, inflammatory bowel diseases, obesity, type 2 diabetes and atherosclosis. There is concern that with migration and westernization, NCDs are becoming more common in Africa and that food security is becoming impaired by unbalanced obesogenic foods rather than inadequate food intake. SUMMARY: There is an urgent need for the formation of combined African-Western research programs to identify what is good and bad in the African diet-microbiome axis to develop strategies to prevent the incidence of NCDs rising to western levels in Africa, at the same time offering novel prevention strategies against the #1 healthcare threat in the developed world.


Assuntos
Diabetes Mellitus Tipo 2 , Microbiota , Doenças não Transmissíveis , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Dieta , Humanos , Doenças não Transmissíveis/epidemiologia , Doenças não Transmissíveis/prevenção & controle , Obesidade/prevenção & controle
9.
Arch Toxicol ; 96(6): 1905-1914, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504979

RESUMO

Subsequent to the dietary uptake of nitrate/nitrite in combination with acetaldehyde/ethanol, combination effects resulting from the sustained endogenous exposure to nitrite and acetaldehyde may be expected. This may imply locoregional effects in the upper gastrointestinal tract as well as systemic effects, such as a potential influence on endogenous formation of N-nitroso compounds (NOC). Salivary concentrations of the individual components nitrate and nitrite and acetaldehyde are known to rise after ingestion, absorption and systemic distribution, thereby reflecting their respective plasma kinetics and parallel secretion through the salivary glands as well as the microbial/enzymatic metabolism in the oral cavity. Salivary excretion may also occur with certain drug molecules and food constituents and their metabolites. Therefore, putative combination effects in the oral cavity and the upper digestive tract may occur, but this has remained largely unexplored up to now. In this Guest Editorial, published evidence on exposure levels and biokinetics of nitrate/nitrite/NOx, NOC and acetaldehyde in the organism is reviewed and knowledge gaps concerning combination effects are identified. Research is suggested to be initiated to study the related unresolved issues.


Assuntos
Nitritos , Trato Gastrointestinal Superior , Acetaldeído/metabolismo , Humanos , Nitratos/metabolismo , Nitritos/metabolismo , Compostos Nitrosos/metabolismo , Saliva/metabolismo , Trato Gastrointestinal Superior/metabolismo
10.
Gastroenterology ; 159(4): 1357-1374.e10, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32673694

RESUMO

BACKGROUND & AIMS: Excess and unresolved endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) promotes intestinal inflammation. Activating transcription factor 6 (ATF6) is one of the signaling mediators of ER stress. We studied the pathways that regulate ATF6 and its role for inflammation in IECs. METHODS: We performed an RNA interference screen, using 23,349 unique small interfering RNAs targeting 7783 genes and a luciferase reporter controlled by an ATF6-dependent ERSE (ER stress-response element) promoter, to identify proteins that activate or inhibit the ATF6 signaling pathway in HEK293 cells. To validate the screening results, intestinal epithelial cell lines (Caco-2 cells) were transfected with small interfering RNAs or with a plasmid overexpressing a constitutively active form of ATF6. Caco-2 cells with a CRISPR-mediated disruption of autophagy related 16 like 1 gene (ATG16L1) were used to study the effect of ATF6 on ER stress in autophagy-deficient cells. We also studied intestinal organoids derived from mice that overexpress constitutively active ATF6, from mice with deletion of the autophagy related 16 like 1 or X-Box binding protein 1 gene in IECs (Atg16l1ΔIEC or Xbp1ΔIEC, which both develop spontaneous ileitis), from patients with Crohn's disease (CD) and healthy individuals (controls). Cells and organoids were incubated with tunicamycin to induce ER stress and/or chemical inhibitors of newly identified activator proteins of ATF6 signaling, and analyzed by real-time polymerase chain reaction and immunoblots. Atg16l1ΔIEC and control (Atg16l1fl/fl) mice were given intraperitoneal injections of tunicamycin and were treated with chemical inhibitors of ATF6 activating proteins. RESULTS: We identified and validated 15 suppressors and 7 activators of the ATF6 signaling pathway; activators included the regulatory subunit of casein kinase 2 (CSNK2B) and acyl-CoA synthetase long chain family member 1 (ACSL1). Knockdown or chemical inhibition of CSNK2B and ACSL1 in Caco-2 cells reduced activity of the ATF6-dependent ERSE reporter gene, diminished transcription of the ATF6 target genes HSP90B1 and HSPA5 and reduced NF-κB reporter gene activation on tunicamycin stimulation. Atg16l1ΔIEC and or Xbp1ΔIEC organoids showed increased expression of ATF6 and its target genes. Inhibitors of ACSL1 or CSNK2B prevented activation of ATF6 and reduced CXCL1 and tumor necrosis factor (TNF) expression in these organoids on induction of ER stress with tunicamycin. Injection of mice with inhibitors of ACSL1 or CSNK2B significantly reduced tunicamycin-mediated intestinal inflammation and IEC death and expression of CXCL1 and TNF in Atg16l1ΔIEC mice. Purified ileal IECs from patients with CD had higher levels of ATF6, CSNK2B, and HSPA5 messenger RNAs than controls; early-passage organoids from patients with active CD show increased levels of activated ATF6 protein, incubation of these organoids with inhibitors of ACSL1 or CSNK2B reduced transcription of ATF6 target genes, including TNF. CONCLUSIONS: Ileal IECs from patients with CD have higher levels of activated ATF6, which is regulated by CSNK2B and HSPA5. ATF6 increases expression of TNF and other inflammatory cytokines in response to ER stress in these cells and in organoids from Atg16l1ΔIEC and Xbp1ΔIEC mice. Strategies to inhibit the ATF6 signaling pathway might be developed for treatment of inflammatory bowel diseases.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Células Epiteliais/patologia , Íleo/metabolismo , Íleo/patologia , Doenças Inflamatórias Intestinais/metabolismo , Animais , Autofagia , Células CACO-2 , Técnicas de Cultura de Células , Chaperona BiP do Retículo Endoplasmático , Células HEK293 , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Camundongos , Transdução de Sinais
11.
Int J Med Microbiol ; 311(3): 151489, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33676240

RESUMO

Alterations in the gut microbiota structure and function are thought to play an important role in the pathogenesis of Crohn's disease (CD). The rapid advancement of high-throughput sequencing technologies led to the identification of microbiome risk signatures associated with distinct disease phenotypes and progressing disease entities. Functional validation of the identified microbiome signatures is essential to understand the underlying mechanisms of microbe-host interactions. Germfree mouse models are available to study the functional role of disease-conditioning complex gut microbial ecosystems (dysbiosis) or pathobionts (single bacteria) in the pathogenesis of CD-like inflammation. Here, we discuss the clinical and mechanistic relevance and limitations of gnotobiotic mouse models in the context of CD. In addition, we will address the role of diet as an essential external factor modulating microbiome changes, potentially underlying disease initiation and development.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Animais , Disbiose , Vida Livre de Germes , Camundongos
12.
Int J Med Microbiol ; 311(3): 151485, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33689954

RESUMO

Gut microbes affect the physiology of their hosts. Studying their diversity and functions is thus of utmost importance as it will open new avenues towards the discovery of new biomolecules and the treatment of diseases. Gut microbiome research is currently boosted by the unification of metagenomics, which has dominated the field in the last two decades, and cultivation, which is experiencing a renaissance. Each of these approaches has advantages and drawbacks that can be overcome if used synergistically. In this brief article, we summarize recent literature and own studies on the cultivation of gut microbes, provide a succinct status quo of cultured fractions and collections of isolates, and give short opinions on challenges and next steps to take.


Assuntos
Microbioma Gastrointestinal , Bactérias/genética , Metagenômica
13.
Gut ; 69(11): 1939-1951, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32111634

RESUMO

OBJECTIVE: Reduced Paneth cell (PC) numbers are observed in inflammatory bowel diseases and impaired PC function contributes to the ileal pathogenesis of Crohn's disease (CD). PCs reside in proximity to Lgr5+ intestinal stem cells (ISC) and mitochondria are critical for ISC-renewal and differentiation. Here, we characterise ISC and PC appearance under inflammatory conditions and describe the role of mitochondrial function for ISC niche-maintenance. DESIGN: Ileal tissue samples from patients with CD, mouse models for mitochondrial dysfunction (Hsp60Δ/ΔISC) and CD-like ileitis (TNFΔARE), and intestinal organoids were used to characterise PCs and ISCs in relation to mitochondrial function. RESULTS: In patients with CD and TNFΔARE mice, inflammation correlated with reduced numbers of Lysozyme-positive granules in PCs and decreased Lgr5 expression in crypt regions. Disease-associated changes in PC and ISC appearance persisted in non-inflamed tissue regions of patients with CD and predicted the risk of disease recurrence after surgical resection. ISC-specific deletion of Hsp60 and inhibition of mitochondrial respiration linked mitochondrial function to the aberrant PC phenotype. Consistent with reduced stemness in vivo, crypts from inflamed TNFΔARE mice fail to grow into organoids ex vivo. Dichloroacetate-mediated inhibition of glycolysis, forcing cells to shift to mitochondrial respiration, improved ISC niche function and rescued the ability of TNFΔARE mice-derived crypts to form organoids. CONCLUSION: We provide evidence that inflammation-associated mitochondrial dysfunction in the intestinal epithelium triggers a metabolic imbalance, causing reduced stemness and acquisition of a dysfunctional PC phenotype. Blocking glycolysis might be a novel drug target to antagonise PC dysfunction in the pathogenesis of CD.


Assuntos
Doença de Crohn/etiologia , Doença de Crohn/patologia , Mitocôndrias/fisiologia , Celulas de Paneth/patologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Humanos , Camundongos , Recidiva , Nicho de Células-Tronco
14.
Gastroenterology ; 157(2): 492-506.e2, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30998992

RESUMO

BACKGROUND & AIMS: Barrett's esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC). Progression from BE to cancer is associated with obesity, possibly due to increased abdominal pressure and gastroesophageal reflux disease, although this pathogenic mechanism has not been proven. We investigated whether environmental or dietary factors associated with obesity contribute to the progression of BE to EAC in mice. METHODS: Tg(ED-L2-IL1RN/IL1B)#Tcw mice (a model of BE, called L2-IL1B mice) were fed a chow (control) or high-fat diet (HFD) or were crossbred with mice that express human interleukin (IL) 8 (L2-IL1B/IL8 mice). Esophageal tissues were collected and analyzed for gene expression profiles and by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry. Organoids were established from BE tissue of mice and cultured with serum from lean or obese individuals or with neutrophils from L2-IL1B mice. Feces from mice were analyzed by 16s ribosomal RNA sequencing and compared to 16s sequencing data from patients with dysplasia or BE. L2-IL1B were mice raised in germ-free conditions. RESULTS: L2-IL1B mice fed an HFD developed esophageal dysplasia and tumors more rapidly than mice fed the control diet; the speed of tumor development was independent of body weight. The acceleration of dysplasia by the HFD in the L2-IL1B mice was associated with a shift in the gut microbiota and an increased ratio of neutrophils to natural killer cells in esophageal tissues compared with mice fed a control diet. We observed similar differences in the microbiomes from patients with BE that progressed to EAC vs patients with BE that did not develop into cancer. Tissues from dysplasias of L2-IL1B mice fed the HFD contained increased levels of cytokines that are produced in response to CXCL1 (the functional mouse homolog of IL8, also called KC). Serum from obese patients caused organoids from L2-IL1B/IL8 mice to produce IL8. BE tissues from L2-IL1B mice fed the HFD and from L2-IL1B/IL8 mice contained increased numbers of myeloid cells and cells expressing Cxcr2 and Lgr5 messenger RNAs (epithelial progenitors) compared with mice fed control diets. BE tissues from L2-IL1B mice raised in germ-free housing had fewer progenitor cells and developed less dysplasia than in L2-IL1 mice raised under standard conditions; exposure of fecal microbiota from L2-IL1B mice fed the HFD to L2-IL1B mice fed the control diet accelerated tumor development. CONCLUSIONS: In a mouse model of BE, we found that an HFD promoted dysplasia by altering the esophageal microenvironment and gut microbiome, thereby inducing inflammation and stem cell expansion, independent of obesity.


Assuntos
Adenocarcinoma/patologia , Esôfago de Barrett/patologia , Neoplasias Esofágicas/patologia , Microbioma Gastrointestinal/fisiologia , Interleucina-8/metabolismo , Obesidade/patologia , Adenocarcinoma/imunologia , Adulto , Idoso , Animais , Esôfago de Barrett/imunologia , Carcinogênese/imunologia , Carcinogênese/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Neoplasias Esofágicas/imunologia , Esôfago/imunologia , Esôfago/patologia , Fezes/microbiologia , Feminino , Voluntários Saudáveis , Humanos , Interleucina-8/genética , Interleucina-8/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/imunologia , Organoides , Soro/imunologia , Soro/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
15.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899482

RESUMO

Plant compounds are described to interact with bile acids during small intestinal digestion. This review will summarise mechanisms of interaction between bile acids and plant compounds, challenges in in vivo and in vitro analyses, and possible consequences on health. The main mechanisms of interaction assume that increased viscosity during digestion results in reduced micellar mobility of bile acids, or that bile acids and plant compounds are associated or complexed at the molecular level. Increasing viscosity during digestion due to specific dietary fibres is considered a central reason for bile acid retention. Furthermore, hydrophobic interactions are proposed to contribute to bile acid retention in the small intestine. Although frequently hypothesised, no mechanism of permanent binding of bile acids by dietary fibres or indigestible protein fractions has yet been demonstrated. Otherwise, various polyphenolic structures were recently associated with reduced micellar solubility and modification of steroid and bile acid excretion but underlying molecular mechanisms of interaction are not yet fully understood. Therefore, future research activities need to consider the complex composition and cell-wall structures as influenced by processing when investigating bile acid interactions. Furthermore, influences of bile acid interactions on gut microbiota need to be addressed to clarify their role in bile acid metabolism.


Assuntos
Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/fisiologia , Digestão/fisiologia , Adsorção , Animais , Fibras na Dieta/análise , Microbioma Gastrointestinal , Humanos , Compostos Fitoquímicos/metabolismo , Plantas/metabolismo , Solubilidade , Viscosidade , beta-Glucanas/metabolismo
16.
Gastroenterology ; 155(5): 1539-1552.e12, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30063920

RESUMO

BACKGROUND & AIMS: Activating transcription factor 6 (ATF6) regulates endoplasmic reticulum stress. We studied whether ATF6 contributes to the development of colorectal cancer (CRC) using tissue from patients and transgenic mice. METHODS: We analyzed data from 541 patients with CRC in The Cancer Genome Atlas database for genetic variants and aberrant expression levels of unfolded protein response genes. Findings were validated in a cohort of 83 patients with CRC in Germany. We generated mice with intestinal epithelial cell-specific expression of the active form of Atf6 (nATF6IEC) from 2 alleles (homozygous), mice with expression of nATF6IEC from 1 allele (heterozygous), and nATF6IECfl/fl mice (controls). All nATF6IEC mice were housed under either specific-pathogen-free or germ-free conditions. Cecal microbiota from homozygous nATF6IEC mice or control mice was transferred into homozygous nATF6IEC mice or control mice. nATF6IEC mice were crossed with mice with disruptions in the myeloid differentiation primary response gene 88 and toll-like receptor adaptor molecule 1 gene (Myd88/Trif-knockout mice). Intestinal tissues were collected from mice and analyzed by histology, immunohistochemistry, immunoblots, gene expression profiling of unfolded protein response and inflammatory genes, array-based comparative genome hybridization, and 16S ribosomal RNA gene sequencing. RESULTS: Increased expression of ATF6 was associated with reduced disease-free survival times of patients with CRC. Homozygous nATF6IEC mice developed spontaneous colon adenomas at 12 weeks of age. Compared with controls, homozygous nATF6IEC mice had changes in the profile of their cecal microbiota, increased proliferation of intestinal epithelial cells, and loss of the mucus barrier-all preceding tumor formation. These mice had increased penetration of bacteria into the inner mucus layer and activation of signal transducer and activator of transcription 3, yet inflammation was not observed at the pretumor or tumor stages. Administration of antibiotics to homozygous nATF6IEC mice greatly reduced tumor incidence, and germ-free housing completely prevented tumorigenesis. Analysis of nATF6IEC MyD88/TRIF-knockout mice showed that tumor initiation and growth required MyD88/TRIF-dependent activation of signal transducer and activator of transcription 3. Transplantation of cecal microbiota from nATF6IEC mice and control mice, collected before tumor formation, caused tumor formation in ex-germ-free nATF6IEC mice. CONCLUSIONS: In patients with CRC, ATF6 was associated with reduced time of disease-free survival. In studies of nATF6IEC mice, we found sustained intestinal activation of ATF6 in the colon to promote dysbiosis and microbiota-dependent tumorigenesis.


Assuntos
Fator 6 Ativador da Transcrição/fisiologia , Neoplasias Colorretais/etiologia , Disbiose/etiologia , Imunidade Inata , Intestinos/microbiologia , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Animais , Neoplasias Colorretais/mortalidade , Progressão da Doença , Humanos , Camundongos , Fator 88 de Diferenciação Mieloide/fisiologia , Fator de Transcrição STAT3/fisiologia , Receptores Toll-Like/fisiologia , Resposta a Proteínas não Dobradas
17.
Digestion ; 100(2): 127-138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30423561

RESUMO

BACKGROUND/AIMS: The gut microbiota is altered in irritable bowel syndrome (IBS), and microbiota manipulations by diet or antibiotics can reduce its symptoms. As fecal microbiota transfer (FMT) in IBS is still controversial, we investigated the clinical and side effects of FMT in a cohort of IBS patients with recurrent, treatment refractory symptoms, and studied gut microbiota signatures. METHODS: Using an observational, prospective study design, we applied FMTs from one unrelated, healthy donor to 13 IBS patients. Fecal samples of patients and the donor were analyzed by 16S ribosomal RNA amplicon sequencing. RESULTS: On a symptom level, primarily abdominal pain symptoms were reduced after FMT, and no adverse effects were observed. Studying the microbiome, we found an increase in alpha diversity and changes in the composition of the gut microbiota after FMT. Beta diversity changes after FMT were prominent in a subset of 7 patients with microbiota profiles coming very close to the donor. These patients also showed most pronounced visceral pain reduction. The relative abundance of Akkermansia muciniphila was inversely correlated with pain reduction in our cohort. CONCLUSION: Although exploratory in nature and with a pilot character, this study highlights the potential role of microbiota manipulations in IBS and describes a novel association of intestinal Akkermansia and pain modulation.


Assuntos
Dor Abdominal/terapia , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Síndrome do Intestino Irritável/terapia , Verrucomicrobia/isolamento & purificação , Dor Abdominal/diagnóstico , Dor Abdominal/etiologia , Adulto , Akkermansia , DNA Bacteriano/isolamento & purificação , Feminino , Microbioma Gastrointestinal/genética , Humanos , Mucosa Intestinal/microbiologia , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/microbiologia , Masculino , Medição da Dor , Projetos Piloto , Estudos Prospectivos , RNA Ribossômico 16S/genética , Resultado do Tratamento , Verrucomicrobia/genética , Adulto Jovem
20.
J Nutr ; 148(1): 77-85, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29378051

RESUMO

Background: High-fat diets (HFDs) have been linked to low-grade inflammation and insulin resistance. Objective: The main purpose of the present study was to assess whether acute overfeeding with an HFD affects insulin sensitivity, gut barrier function, and fecal microbiota in humans. Methods: In a prospective intervention study, 24 healthy men [mean ± SD: age 23.0 ± 2.8 y, body mass index (in kg/m2) 23.0 ± 2.1] received an HFD (48% of energy from fat) with an additional 1000 kcal/d (as whipping cream) above their calculated energy expenditure for 7 d. Insulin sensitivity (hyperinsulinemic euglycemic clamp), gut permeability (sugar and polyethylene glycol absorption tests, plasma zonulin), and gut microbiota profiles (high-throughput 16S rRNA gene sequencing) were assessed before and after overfeeding, and 14 d after intervention. Additionally, inflammation markers such as high-sensitivity C-reactive protein, lipopolysaccharide-binding protein, leptin, high-molecular-weight adiponectin, calprotectin, regulated on activation normal, T cell expressed and secreted (RANTES), and monocyte chemoattractant protein-1 were measured in plasma by ELISA. Finally, lipid parameters were analyzed in serum by a laboratory service. Results: Although participants gained 0.9 ± 0.6 kg (P < 0.001) body weight, overnutrition was not associated with a significant change in insulin sensitivity (M value and glucose disposal). Overfeeding for 7 d resulted in elevated serum total (10.2%), LDL (14.6%) and HDL (14.8%) cholesterol concentrations (P < 0.01). In contrast, fasting plasma triglyceride significantly declined (29.3%) during overfeeding (P < 0.001). In addition, there were no significant changes in inflammatory markers. Urine excretion of 4 sugars and polyethylene glycol, used as a proxy for gut permeability, and plasma concentration of zonulin, a marker of paracellular gut permeability, were unchanged. Moreover, overfeeding was not associated with consistent changes in gut microbiota profiles, but marked alterations were observed in a subgroup of 6 individuals. Conclusions: Our findings suggest that short-term overfeeding with an HFD does not significantly impair insulin sensitivity and gut permeability in normal-weight healthy men, and that changes in dominant communities of fecal bacteria occur only in certain individuals. The study was registered in the German Clinical Trial Register as DRKS00006211.


Assuntos
Laticínios , Dieta Hiperlipídica , Fezes/microbiologia , Microbioma Gastrointestinal , Adulto , Biomarcadores/sangue , Índice de Massa Corporal , Metabolismo Energético , Seguimentos , Humanos , Resistência à Insulina , Masculino , Permeabilidade , Estudos Prospectivos , RNA Ribossômico 16S/genética , Estatísticas não Paramétricas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA