Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nucleic Acids Res ; 51(10): 4929-4941, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37026471

RESUMO

Transposon Tn4430 belongs to a widespread family of bacterial transposons, the Tn3 family, which plays a prevalent role in the dissemination of antibiotic resistance among pathogens. Despite recent data on the structural architecture of the transposition complex, the molecular mechanisms underlying the replicative transposition of these elements are still poorly understood. Here, we use force-distance curve-based atomic force microscopy to probe the binding of the TnpA transposase of Tn4430 to DNA molecules containing one or two transposon ends and to extract the thermodynamic and kinetic parameters of transposition complex assembly. Comparing wild-type TnpA with previously isolated deregulated TnpA mutants supports a stepwise pathway for transposition complex formation and activation during which TnpA first binds as a dimer to a single transposon end and then undergoes a structural transition that enables it to bind the second end cooperatively and to become activated for transposition catalysis, the latter step occurring at a much faster rate for the TnpA mutants. Our study thus provides an unprecedented approach to probe the dynamic of a complex DNA processing machinery at the single-particle level.


Assuntos
Elementos de DNA Transponíveis , Transposases , Elementos de DNA Transponíveis/genética , Transposases/genética , Transposases/química , Recombinação Genética , Bactérias/genética , Análise Espectral
2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593647

RESUMO

Patterned ground, defined by the segregation of stones in soil according to size, is one of the most strikingly self-organized characteristics of polar and high-alpine landscapes. The presence of such patterns on Mars has been proposed as evidence for the past presence of surface liquid water. Despite their ubiquity, the dearth of quantitative field data on the patterns and their slow dynamics have hindered fundamental understanding of the pattern formation mechanisms. Here, we use laboratory experiments to show that stone transport is strongly dependent on local stone concentration and the height of ice needles, leading effectively to pattern formation driven by needle ice activity. Through numerical simulations, theory, and experiments, we show that the nonlinear amplification of long wavelength instabilities leads to self-similar dynamics that resemble phase separation patterns in binary alloys, characterized by scaling laws and spatial structure formation. Our results illustrate insights to be gained into patterns in landscapes by viewing the pattern formation through the lens of phase separation. Moreover, they may help interpret spatial structures that arise on diverse planetary landscapes, including ground patterns recently examined using the rover Curiosity on Mars.

3.
BMC Biol ; 21(1): 72, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024917

RESUMO

BACKGROUND: Bdelloid rotifers are micro-invertebrates distributed worldwide, from temperate latitudes to the most extreme areas of the planet like Antarctica or the Atacama Desert. They have colonized any habitat where liquid water is temporarily available, including terrestrial environments such as soils, mosses, and lichens, tolerating desiccation and other types of stress such as high doses of ionizing radiation (IR). It was hypothesized that bdelloid desiccation and radiation resistance may be attributed to their potential ability to repair DNA double-strand breaks (DSBs). Here, these properties are investigated and compared among nine bdelloid species collected from both mild and harsh habitats, addressing the correlation between the ability of bdelloid rotifers to survive desiccation and their capacity to repair massive DNA breakage in a phylogenetically explicit context. Our research includes both specimens isolated from habitats that experience frequent desiccation (at least 1 time per generation), and individuals sampled from habitats that rarely or never experienced desiccation. RESULTS: Our analysis reveals that DNA repair prevails in somatic cells of both desiccation-tolerant and desiccation-sensitive bdelloid species after exposure to X-ray radiation. Species belonging to both categories are able to withstand high doses of ionizing radiation, up to 1000 Gy, without experiencing any negative effects on their survival. However, the fertility of two desiccation-sensitive species, Rotaria macrura and Rotaria rotatoria, was more severely impacted by low doses of radiation than that of desiccation-resistant species. Surprisingly, the radioresistance of desiccation-resistant species is not related to features of their original habitat. Indeed, bdelloids isolated from Atacama Desert or Antarctica were not characterized by a higher radioresistance than species found in more temperate environments. CONCLUSIONS: Tolerance to desiccation and radiation are supported as ancestral features of bdelloid rotifers, with a group of species of the genus Rotaria having lost this trait after colonizing permanent water habitats. Together, our results provide a comprehensive overview of the evolution of desiccation and radiation resistance among bdelloid rotifers.


Assuntos
Dessecação , Rotíferos , Humanos , Animais , Rotíferos/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Água
4.
Nature ; 526(7571): 100-3, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432248

RESUMO

Glacial erosion is fundamental to our understanding of the role of Cenozoic-era climate change in the development of topography worldwide, yet the factors that control the rate of erosion by ice remain poorly understood. In many tectonically active mountain ranges, glaciers have been inferred to be highly erosive, and conditions of glaciation are used to explain both the marked relief typical of alpine settings and the limit on mountain heights above the snowline, that is, the glacial buzzsaw. In other high-latitude regions, glacial erosion is presumed to be minimal, where a mantle of cold ice effectively protects landscapes from erosion. Glacial erosion rates are expected to increase with decreasing latitude, owing to the climatic control on basal temperature and the production of meltwater, which promotes glacial sliding, erosion and sediment transfer. This relationship between climate, glacier dynamics and erosion rate is the focus of recent numerical modelling, yet it is qualitative and lacks an empirical database. Here we present a comprehensive data set that permits explicit examination of the factors controlling glacier erosion across climatic regimes. We report contemporary ice fluxes, sliding speeds and erosion rates inferred from sediment yields from 15 outlet glaciers spanning 19 degrees of latitude from Patagonia to the Antarctic Peninsula. Although this broad region has a relatively uniform tectonic and geologic history, the thermal regimes of its glaciers range from temperate to polar. We find that basin-averaged erosion rates vary by three orders of magnitude over this latitudinal transect. Our findings imply that climate and the glacier thermal regime control erosion rates more than do extent of ice cover, ice flux or sliding speeds.

5.
Proc Natl Acad Sci U S A ; 114(5): E669-E678, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096365

RESUMO

The Tn3 family is a widespread group of replicative transposons that are notorious for their contribution to the dissemination of antibiotic resistance and the emergence of multiresistant pathogens worldwide. The TnpA transposase of these elements catalyzes DNA breakage and rejoining reactions required for transposition. It also is responsible for target immunity, a phenomenon that prevents multiple insertions of the transposon into the same genomic region. However, the molecular mechanisms whereby TnpA acts in both processes remain unknown. Here, we have developed sensitive biochemical assays for the TnpA transposase of the Tn3-family transposon Tn4430 and used these assays to characterize previously isolated TnpA mutants that are selectively affected in immunity. Compared with wild-type TnpA, these mutants exhibit deregulated activities. They spontaneously assemble a unique asymmetric synaptic complex in which one TnpA molecule simultaneously binds two transposon ends. In this complex, TnpA is in an activated state competent for DNA cleavage and strand transfer. Wild-type TnpA can form this complex only on precleaved ends mimicking the initial step of transposition. The data suggest that transposition is controlled at an early stage of transpososome assembly, before DNA cleavage, and that mutations affecting immunity have unlocked TnpA by stabilizing the protein in a monomeric activated synaptic configuration. We propose an asymmetric pathway for coupling active transpososome assembly with proper target recruitment and discuss this model with respect to possible immunity mechanisms.


Assuntos
Transposases/química , DNA/química , Elementos de DNA Transponíveis , Escherichia coli/genética , Mutação , Transposases/genética
6.
Mol Genet Genomics ; 294(3): 531-548, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30406402

RESUMO

Competence for natural transformation is a widespread developmental process of streptococci. By allowing the uptake and recombination of exogenous naked DNA into the genome, natural transformation, as transposable elements, plays a key role in the plasticity of bacterial genomes. We previously analysed the insertion sites of IS1548, an insertion sequence present in Streptococcus agalactiae and S. pyogenes, and showed that some targeted loci are involved in competence induction. In this work, we investigated on a large scale if loci coding for early competence factors (ComX and the two pheromone-dependent signalling systems ComCDE and ComRS) of streptococci are especially targeted by transposable elements. The transposable elements inserted in regions surrounding these genes and housekeeping genes used for Multilocus Sequence Typing (MLST) were systematically searched for. We found numerous insertion events in the close vicinity of early competence genes, but only very few into the MLST loci. The incidence of transposable elements, mainly insertion sequences, is particularly high in the intergenic regions surrounding comX alleles in numerous species belonging to most streptococcal groups. The identification of scarce disruptive insertions inside early competence genes indicates that the maintenance of competence is essential for streptococci. The specific association of transposable elements with intergenic regions bordering the main regulatory genes of competence may impact on the induction of transformability and so, on the genome plasticity and adaptive evolution of streptococci. This widespread phenomenon brings new perspectives on our understanding of competence regulation and its role in the bacterial life cycle.


Assuntos
Elementos de DNA Transponíveis/genética , Genes Bacterianos/genética , Genoma Bacteriano/genética , Streptococcus/genética , Sítios de Ligação/genética , DNA Intergênico/genética , Regulação Bacteriana da Expressão Gênica , Tipagem de Sequências Multilocus , Mutagênese Insercional , Filogenia , Especificidade da Espécie , Streptococcus/classificação
7.
J Bacteriol ; 197(1): 219-30, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25349156

RESUMO

Lactobacillus plantarum is a lactic acid bacterium that produces a racemic mixture of l- and d-lactate from sugar fermentation. The interconversion of lactate isomers is performed by a lactate racemase (Lar) that is transcriptionally controlled by the l-/d-lactate ratio and maximally induced in the presence of l-lactate. We previously reported that the Lar activity depends on the expression of two divergently oriented operons: (i) the larABCDE operon encodes the nickel-dependent lactate racemase (LarA), its maturases (LarBCE), and a lactic acid channel (LarD), and (ii) the larR(MN)QO operon encodes a transcriptional regulator (LarR) and a four-component ABC-type nickel transporter [Lar(MN), in which the M and N components are fused, LarQ, and LarO]. LarR is a novel regulator of the Crp-Fnr family (PrfA group). Here, the role of LarR was further characterized in vivo and in vitro. We show that LarR is a positive regulator that is absolutely required for the expression of Lar activity. Using gel retardation experiments, we demonstrate that LarR binds to a 16-bp palindromic sequence (Lar box motif) that is present in the larR-larA intergenic region. Mutations in the Lar box strongly affect LarR binding and completely abolish transcription from the larA promoter (PlarA). Two half-Lar boxes located between the Lar box and the -35 box of PlarA promote LarR multimerization on DNA, and point mutations within one or both half-Lar boxes inhibit PlarA induction by l-lactate. Gel retardation and footprinting experiments indicate that l-lactate has a positive effect on the binding and multimerization of LarR, while d-lactate antagonizes the positive effect of l-lactate. A possible mechanism of LarR regulation by lactate enantiomers is proposed.


Assuntos
Proteínas de Bactérias/metabolismo , Ácido Láctico/metabolismo , Lactobacillus plantarum/metabolismo , Racemases e Epimerases/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano , DNA Intergênico , Ensaio de Desvio de Mobilidade Eletroforética , Fermentação , Regulação Bacteriana da Expressão Gênica/fisiologia , Ácido Láctico/química , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/genética
8.
Mol Microbiol ; 83(4): 805-20, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22624153

RESUMO

Like other transposons of the Tn3 family, Tn4430 exhibits target immunity, a process that prevents multiple insertions of the transposon into the same DNA molecule. Immunity is conferred by the terminal inverted repeats of the transposon and is specific to each element of the family, indicating that the transposase TnpA is directly involved in the process.However, the molecular mechanism whereby this protein promotes efficient transposition into permissive targets while preventing transposition into immune targets remains unknown. Here, we demonstrate that both functions of TnpA can be uncoupled from each other by isolating and characterizing mutants that are proficient in transposition (T+) but impaired in immunity (I-). The identified T+/I- mutations are clustered into separate structural and functional domains of TnpA, indicating that different activities of the protein contribute to immunity.Combination of separate mutations had synergistic effects on target immunity but contrasting effects on transposition. One class of mutations was found to stimulate transposition, whereas other mutations appeared to reduce TnpA activity. The data are discussed with respect to alternative models in which TnpA acts as a specific determinant to both establish and respond to immunity.


Assuntos
Elementos de DNA Transponíveis , Escherichia coli/genética , Transposases/metabolismo , Substituição de Aminoácidos , Bacillus thuringiensis/genética , Escherichia coli/metabolismo , Técnicas Genéticas , Mutação , Transposases/química , Transposases/genética
9.
Nat Commun ; 14(1): 7638, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993452

RESUMO

Bdelloid rotifers are part of the restricted circle of multicellular animals that can withstand a wide range of genotoxic stresses at any stage of their life cycle. In this study, bdelloid rotifer Adineta vaga is used as a model to decipher the molecular basis of their extreme tolerance. Proteomic analysis shows that a specific DNA ligase, different from those usually involved in DNA repair in eukaryotes, is strongly over-represented upon ionizing radiation. A phylogenetic analysis reveals its orthology to prokaryotic DNA ligase E, and its horizontal acquisition by bdelloid rotifers and plausibly other eukaryotes. The fungus Mortierella verticillata, having a single copy of this DNA Ligase E homolog, also exhibits an increased radiation tolerance with an over-expression of this DNA ligase E following X-ray exposure. We also provide evidence that A. vaga ligase E is a major contributor of DNA breaks ligation activity, which is a common step of all important DNA repair pathways. Consistently, its heterologous expression in human cell lines significantly improves their radio-tolerance. Overall, this study highlights the potential of horizontal gene transfers in eukaryotes, and their contribution to the adaptation to extreme conditions.


Assuntos
Eucariotos , Rotíferos , Animais , Humanos , Eucariotos/genética , Filogenia , DNA Ligases/genética , DNA Ligases/metabolismo , Ligases/metabolismo , Proteômica , Rotíferos/genética , Dano ao DNA , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo
10.
J Bacteriol ; 194(19): 5305-14, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22843843

RESUMO

Bacterial differentiation is often associated with the asymmetric localization of regulatory proteins, such as histidine kinases. PdhS is an essential and polarly localized histidine kinase in the pathogenic alphaproteobacterium Brucella abortus. After cell division, PdhS is asymmetrically segregated between the two sibling cells, highlighting a differentiation event. However, the function(s) of PdhS in the B. abortus cell cycle remains unknown. We used an original approach, the pentapeptide scanning mutagenesis method, to generate a thermosensitive allele of pdhS. We report that a B. abortus strain carrying this pdhS allele displays growth arrest and an altered DivK-yellow fluorescent protein (YFP) polar localization at the restrictive temperature. Moreover, the production of a nonphosphorylatable PdhS protein or truncated PdhS proteins leads to dominant-negative effects by generating morphological defects consistent with the inhibition of cell division. In addition, we have used a domain mapping approach combined with yeast two-hybrid and fluorescence microscopy methods to better characterize the unusual PdhS sensory domain. We have identified a fragment of the PdhS sensory domain required for protein-protein interaction (amino acids [aa] 210 to 434), a fragment sufficient for polar localization (aa 1 to 434), and a fragment (aa 527 to 661) whose production in B. abortus correlates with the generation of cell shape alterations. The data support a model in which PdhS acts as an essential regulator of cell cycle progression in B. abortus and contribute to a better understanding of the differentiation program inherited by the two sibling cells.


Assuntos
Proteínas de Bactérias/metabolismo , Brucella abortus/citologia , Brucella abortus/metabolismo , Ciclo Celular/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Bactérias/genética , Brucella abortus/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Histidina Quinase , Proteínas Luminescentes , Mutagênese , Fosforilação , Proteínas Quinases/genética , Temperatura , Técnicas do Sistema de Duplo-Híbrido
11.
Mol Microbiol ; 79(3): 759-71, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21255117

RESUMO

Bacteria display a variety of shapes, which have biological relevance. In most eubacteria, cell shape is maintained by the tough peptidoglycan (PG) layer of the cell wall, the sacculus. The organization of PG synthesis machineries, orchestrated by different cytoskeletal elements, determines the specific shapes of sacculi. In rod-shaped bacteria, the actin-like (MreB) and the tubuline-like (FtsZ) cytoskeletons control synthesis of the sidewall (elongation) and the crosswall (septation) respectively. Much less is known concerning cell morphogenesis in cocci, which lack MreB proteins. While spherical cocci exclusively display septal growth, ovococci additionally display peripheral growth, which is responsible of the slight longitudinal expansion that generates their ovoid shape. Here, we report that the ovococcus Lactococcus lactis has the ability to become rod-shaped. L. lactis IL1403 wild-type cells form long aseptate filaments during both biofilm and planktonic growth in a synthetic medium. Nascent PG insertion and the division protein FtsK localize in multiple peripheral rings regularly spaced along the filaments. We show that filamentation results from septation inhibition, and that penicillin-binding proteins PBP2x and PBP2b play a direct role in this process. We propose a model for filament formation in L. lactis, and discuss the possible biological role of such morphological differentiation.


Assuntos
Parede Celular/metabolismo , Lactococcus/crescimento & desenvolvimento , Lactococcus/metabolismo , Morfogênese , Proteínas de Bactérias/metabolismo , Biofilmes/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Lactococcus/citologia , Lactococcus/ultraestrutura , Meticilina/farmacologia , Modelos Biológicos , Morfogênese/efeitos dos fármacos , Coloração e Rotulagem , Frações Subcelulares/efeitos dos fármacos
12.
Nucleic Acids Res ; 38(6): 2044-56, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20044348

RESUMO

In DNA site-specific recombination catalysed by tyrosine recombinases, two pairs of DNA strands are sequentially exchanged between separate duplexes and the mechanisms that confer directionality to this theoretically reversible reaction remain unclear. The tyrosine recombinase TnpI acts at the internal resolution site (IRS) of the transposon Tn4430 to resolve intermolecular transposition products. Recombination is catalysed at the IRS core sites (IR1-IR2) and is regulated by adjacent TnpI-binding motifs (DR1 and DR2). These are dispensable accessory sequences that confer resolution selectivity to the reaction by stimulating synapsis between directly repeated IRSs. Here, we show that formation of the DR1-DR2-containing synapse imposes a specific order of activation of the TnpI catalytic subunits in the complex so that the IR1-bound subunits catalyse the first strand exchange and the IR2-bound subunits the second strand exchange. This ordered pathway was demonstrated for a complete recombination reaction using a TnpI catalytic mutant (TnpI-H234L) partially defective in DNA rejoining. The presence of the DR1- and DR2-bound TnpI subunits was also found to stabilize transient recombination intermediates, further displacing the reaction equilibrium towards product formation. Implication of TnpI/IRS accessory elements in the initial architecture of the synapse and subsequent conformational changes taking place during strand exchange is discussed.


Assuntos
DNA Nucleotidiltransferases/química , Recombinases/química , Motivos de Aminoácidos , Biocatálise , Clivagem do DNA , DNA Nucleotidiltransferases/metabolismo , Modelos Moleculares , Recombinases/metabolismo , Recombinação Genética , Sequências Repetitivas de Aminoácidos
13.
Nat Commun ; 13(1): 6155, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257990

RESUMO

Transposons are diverse mobile genetic elements that play the critical role as genome architects in all domains of life. Tn3 is a widespread family and among the first identified bacterial transposons famed for their contribution to the dissemination of antibiotic resistance. Transposition within this family is mediated by a large TnpA transposase, which facilitates both transposition and target immunity. Howtever, a structural framework required for understanding the mechanism of TnpA transposition is lacking. Here, we describe the cryo-EM structures of TnpA from Tn4430 in the apo form and paired with transposon ends before and after DNA cleavage and strand transfer. We show that TnpA has an unusual architecture and exhibits a family specific regulatory mechanism involving metamorphic refolding of the RNase H-like catalytic domain. The TnpA structure, constrained by a double dimerization interface, creates a peculiar topology that suggests a specific role for the target DNA in transpososome assembly and activation.


Assuntos
Elementos de DNA Transponíveis , Escherichia coli , Elementos de DNA Transponíveis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transposases/genética , Transposases/metabolismo , Ribonuclease H/genética
14.
Sci Adv ; 8(48): eadc8829, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449626

RESUMO

Rotifers of the class Bdelloidea are microscopic animals notorious for their long-term persistence in the apparent absence of sexual reproduction and meiotic recombination. This evolutionary paradox is often counterbalanced by invoking their ability to repair environmentally induced genome breakage. By studying the dynamics of DNA damage response in the bdelloid species Adineta vaga, we found that it occurs rapidly in the soma, producing a partially reassembled genome. By contrast, germline DNA repair is delayed to a specific time window of oogenesis during which homologous chromosomes adopt a meiotic-like juxtaposed configuration, resulting in accurate reconstitution of the genome in the offspring. Our finding that a noncanonical meiosis is the mechanism of germline DNA repair in bdelloid rotifers gives previously unidentified insights on their enigmatic long-term evolution.


Assuntos
Reparo do DNA , Meiose , Animais , Reprodução , Resolução de Problemas
15.
J Biol Chem ; 285(31): 24003-13, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20525686

RESUMO

Cell wall peptidoglycan assembly is a tightly regulated process requiring the combined action of multienzyme complexes. In this study we provide direct evidence showing that substrate transformations occurring at the different stages of this process play a crucial role in the spatial and temporal coordination of the cell wall synthesis machinery. Peptidoglycan substrate alteration was investigated in the Gram-positive bacterium Lactococcus lactis by substituting the peptidoglycan precursor biosynthesis genes of this bacterium for those of the vancomycin-resistant bacterium Lactobacillus plantarum. A set of L. lactis mutant strains in which the normal d-Ala-ended precursors were partially or totally replaced by d-Lac-ended precursors was generated. Incorporation of the altered precursor into the cell wall induced morphological changes arising from a defect in cell elongation and cell separation. Structural analysis of the muropeptides confirmed that the activity of multiple enzymes involved in peptidoglycan synthesis was altered. Optimization of this altered pathway was necessary to increase the level of vancomycin resistance conferred by the utilization of d-Lac-ended peptidoglycan precursors in the mutant strains. The implications of these findings on the control of bacterial cell morphogenesis and the mechanisms of vancomycin resistance are discussed.


Assuntos
Parede Celular/metabolismo , Lactococcus lactis/metabolismo , Peptidoglicano/química , Antibacterianos/farmacologia , Proliferação de Células , Resistência Microbiana a Medicamentos , Genoma , Ácido Láctico/química , Meticilina/química , Modelos Biológicos , Mutação , Proteínas de Ligação às Penicilinas/metabolismo , Plasmídeos/metabolismo , Análise de Sequência de DNA , Vancomicina/farmacologia
17.
Sci Adv ; 7(41): eabg4216, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34613768

RESUMO

Bdelloid rotifers are notorious as a speciose ancient clade comprising only asexual lineages. Thanks to their ability to repair highly fragmented DNA, most bdelloid species also withstand complete desiccation and ionizing radiation. Producing a well-assembled reference genome is a critical step to developing an understanding of the effects of long-term asexuality and DNA breakage on genome evolution. To this end, we present the first high-quality chromosome-level genome assemblies for the bdelloid Adineta vaga, composed of six pairs of homologous (diploid) chromosomes with a footprint of paleotetraploidy. The observed large-scale losses of heterozygosity are signatures of recombination between homologous chromosomes, either during mitotic DNA double-strand break repair or when resolving programmed DNA breaks during a modified meiosis. Dynamic subtelomeric regions harbor more structural diversity (e.g., chromosome rearrangements, transposable elements, and haplotypic divergence). Our results trigger the reappraisal of potential meiotic processes in bdelloid rotifers and help unravel the factors underlying their long-term asexual evolutionary success.

18.
J Bacteriol ; 192(16): 4233-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20562304

RESUMO

Specificity of the Tn4430 target immunity signal was examined by fusing the transposase TnpA to the LacI repressor of Escherichia coli. The resulting chimeric proteins failed to impose immunity to DNA targets carrying copies of the lacO operator, though they were proficient in lacO binding in vivo and remained responsive to wild-type immunity conferred by the Tn4430 inverted repeat end. Intriguingly, the presence of lacO repeats within the target was found to strongly influence target site selection by Tn4430, but in a LacI-independent manner.


Assuntos
Elementos de DNA Transponíveis , DNA Bacteriano/metabolismo , Sequências Repetidas Terminais , Transposases/metabolismo , Escherichia coli/genética , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Transposases/genética
19.
J Cell Biochem ; 110(2): 484-96, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20336696

RESUMO

The mode of action of Hoxa1, like that of most Hox proteins, remains poorly characterized. In an effort to identify functional determinants contributing to the activity of Hoxa1 as a transcription factor, we generated 18 pentapeptide insertion mutants of the Hoxa1 protein and we assayed them in transfected cells for their activity on target enhancers from the EphA2 and Hoxb1 genes known to respond to Hoxa1 in the developing hindbrain. Only four mutants displayed a complete loss-of-function. Three of them contained an insertion in the homeodomain of Hoxa1, whereas the fourth loss-of-function mutant harbored an insertion in the very N-terminal end of the protein. Transcription activation assays in yeast further revealed that the integrity of both the N-terminal end and homeodomain is required for Hoxa1-mediated transcriptional activation. Furthermore, an insertion in the serine-threonine-proline rich C-terminal extremity of Hoxa1 induced an increase in activity in mammalian cells as well as in the yeast assay. The C-terminal extremity thus modulates the transcriptional activation capacity of the protein. Finally, electrophoretic mobility shift assays revealed that the N-terminal extremity of the protein also exerts a modulatory influence on DNA binding by Hoxa1-Pbx1a heterodimers.


Assuntos
DNA/metabolismo , Proteínas de Homeodomínio/genética , Oligopeptídeos/química , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Ativação Transcricional , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Homeodomínio/química , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese , Fatores de Transcrição/química
20.
Methods Mol Biol ; 2075: 157-177, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31584162

RESUMO

Transposons are found in a wide variety of forms throughout the prokaryotic world where they actively contribute to the adaptive strategies of bacterial communities and hence, to the continuous emergence of new multiresistant pathogens. Contrasting with their biological and societal impact, only a few bacterial transposons have been the subject of detailed molecular studies. In this chapter, we propose a set of reliable biochemical methods as a primary route for studying new transposition mechanisms. These methods include (a) a straightforward approach termed "thermal shift induction" to produce the transposase in a soluble and properly folded configuration prior to its purification, (b) an adaptation of classical electrophoretic mobility shift assays (EMSA) combined to fluorescently labeled DNA substrates to determine the DNA content of different complexes assembled by the transposase, and (c) a highly sensitive "in-gel" DNA footprinting assay to further characterize these complexes at the base pair resolution level. A combination of these approaches was recently applied to decipher the molecular organization of key intermediates in the Tn3-family transposition pathway, a mechanism that has long been refractory to biochemical studies.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Elementos de DNA Transponíveis , Transposases/metabolismo , Fenômenos Fisiológicos Bacterianos , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica , Substâncias Macromoleculares/metabolismo , Ligação Proteica , Coloração e Rotulagem , Temperatura , Transposases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA