Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 185(20): 3705-3719.e14, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179667

RESUMO

The intestinal microbiota is an important modulator of graft-versus-host disease (GVHD), which often complicates allogeneic hematopoietic stem cell transplantation (allo-HSCT). Broad-spectrum antibiotics such as carbapenems increase the risk for intestinal GVHD, but mechanisms are not well understood. In this study, we found that treatment with meropenem, a commonly used carbapenem, aggravates colonic GVHD in mice via the expansion of Bacteroides thetaiotaomicron (BT). BT has a broad ability to degrade dietary polysaccharides and host mucin glycans. BT in meropenem-treated allogeneic mice demonstrated upregulated expression of enzymes involved in the degradation of mucin glycans. These mice also had thinning of the colonic mucus layer and decreased levels of xylose in colonic luminal contents. Interestingly, oral xylose supplementation significantly prevented thinning of the colonic mucus layer in meropenem-treated mice. Specific nutritional supplementation strategies, including xylose supplementation, may combat antibiotic-mediated microbiome injury to reduce the risk for intestinal GVHD in allo-HSCT patients.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteroides , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Meropeném , Camundongos , Mucinas/metabolismo , Muco/metabolismo , Polissacarídeos/metabolismo , Xilose
2.
Cancer Immunol Res ; 12(5): 530-543, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363296

RESUMO

Tools for genome-wide rapid identification of peptide-major histocompatibility complex targets of T-cell receptors (TCR) are not yet universally available. We present a new antigen screening method, the T-synapse (Tsyn) reporter system, which includes antigen-presenting cells (APC) with a Fas-inducible NF-κB reporter and T cells with a nuclear factor of activated T cells (NFAT) reporter. To functionally screen for target antigens from a cDNA library, productively interacting T cell-APC aggregates were detected by dual-reporter activity and enriched by flow sorting followed by antigen identification quantified by deep sequencing (Tsyn-seq). When applied to a previously characterized TCR specific for the E7 antigen derived from human papillomavirus type 16 (HPV16), Tsyn-seq successfully enriched the correct cognate antigen from a cDNA library derived from an HPV16-positive cervical cancer cell line. Tsyn-seq provides a method for rapidly identifying antigens recognized by TCRs of interest from a tumor cDNA library. See related Spotlight by Makani and Joglekar, p. 515.


Assuntos
Sinapses Imunológicas , Receptores de Antígenos de Linfócitos T , Linfócitos T , Humanos , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular Tumoral , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Papillomavirus Humano 16/imunologia , Papillomavirus Humano 16/genética , Sinapses Imunológicas/imunologia , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/imunologia , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia
3.
bioRxiv ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38895199

RESUMO

Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Herein, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal study of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. 16S rRNA gene sequencing revealed significant shifts in gut microbial community structure during oral fluoropyrimidine treatment across multiple patient cohorts, in mouse small and large intestinal contents, and in patient-derived ex vivo communities. Metagenomic sequencing revealed marked shifts in pyrimidine-related gene abundance during oral fluoropyrimidine treatment, including enrichment of the preTA operon, which is sufficient for the inactivation of active metabolite 5-fluorouracil (5-FU). preTA + bacteria depleted 5-FU in gut microbiota grown ex vivo and the mouse distal gut. Germ-free and antibiotic-treated mice experienced increased fluoropyrimidine toxicity, which was rescued by colonization with the mouse gut microbiota, preTA + E. coli, or preTA-high CRC patient stool. Finally, preTA abundance was negatively associated with fluoropyrimidine toxicity in patients. Together, these data support a causal, clinically relevant interaction between a human gut bacterial operon and the dose-limiting side effects of cancer treatment. Our approach is generalizable to other drugs, including cancer immunotherapies, and provides valuable insights into host-microbiome interactions in the context of disease.

4.
Cell Host Microbe ; 32(9): 1621-1636.e6, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39214085

RESUMO

Acute lower gastrointestinal GVHD (aLGI-GVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation. Although the intestinal microbiota is associated with the incidence of aLGI-GVHD, how the intestinal microbiota impacts treatment responses in aLGI-GVHD has not been thoroughly studied. In a cohort of patients with aLGI-GVHD (n = 37), we found that non-response to standard therapy with corticosteroids was associated with prior treatment with carbapenem antibiotics and a disrupted fecal microbiome characterized by reduced abundances of Bacteroides ovatus. In a murine GVHD model aggravated by carbapenem antibiotics, introducing B. ovatus reduced GVHD severity and improved survival. These beneficial effects of Bacteroides ovatus were linked to its ability to metabolize dietary polysaccharides into monosaccharides, which suppressed the mucus-degrading capabilities of colonic mucus degraders such as Bacteroides thetaiotaomicron and Akkermansia muciniphila, thus reducing GVHD-related mortality. Collectively, these findings reveal the importance of microbiota in aLGI-GVHD and therapeutic potential of B. ovatus.


Assuntos
Bacteroides , Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Doença Enxerto-Hospedeiro/microbiologia , Animais , Bacteroides/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Humanos , Feminino , Masculino , Disbiose/microbiologia , Fezes/microbiologia , Transplante de Células-Tronco Hematopoéticas , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Akkermansia , Adulto , Bacteroides thetaiotaomicron/efeitos dos fármacos , Camundongos Endogâmicos BALB C
5.
Sci Transl Med ; 15(700): eabq4006, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37315113

RESUMO

Immune checkpoint inhibitors (ICIs) target advanced malignancies with high efficacy but also predispose patients to immune-related adverse events like immune-mediated colitis (IMC). Given the association between gut bacteria with response to ICI therapy and subsequent IMC, fecal microbiota transplantation (FMT) represents a feasible way to manipulate microbial composition in patients, with a potential benefit for IMC. Here, we present a large case series of 12 patients with refractory IMC who underwent FMT from healthy donors as salvage therapy. All 12 patients had grade 3 or 4 ICI-related diarrhea or colitis that failed to respond to standard first-line (corticosteroids) and second-line immunosuppression (infliximab or vedolizumab). Ten patients (83%) achieved symptom improvement after FMT, and three patients (25%) required repeat FMT, two of whom had no subsequent response. At the end of the study, 92% achieved IMC clinical remission. 16S rRNA sequencing of patient stool samples revealed that compositional differences between FMT donors and patients with IMC before FMT were associated with a complete response after FMT. Comparison of pre- and post-FMT stool samples in patients with complete responses showed significant increases in alpha diversity and increases in the abundances of Collinsella and Bifidobacterium, which were depleted in FMT responders before FMT. Histologically evaluable complete response patients also had decreases in select immune cells , including CD8+ T cells, in the colon after FMT when compared with non-complete response patients (n = 4). This study validates FMT as an effective treatment strategy for IMC and gives insights into the microbial signatures that may play a critical role in FMT response.


Assuntos
Colite , Transplante de Microbiota Fecal , Inibidores de Checkpoint Imunológico , Inibidores de Checkpoint Imunológico/efeitos adversos , Colite/induzido quimicamente , Colite/terapia , Transplante de Microbiota Fecal/métodos , RNA Ribossômico 16S/genética , Fezes/microbiologia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso
6.
Res Sq ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778495

RESUMO

Acute gastrointestinal intestinal GVHD (aGI-GVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation, and the intestinal microbiota is known to impact on its severity. However, an association between treatment response of aGI-GVHD and the intestinal microbiota has not been well-studied. In a cohort of patients with aGI-GVHD (n=37), we found that non-response to standard therapy with corticosteroids was associated with prior treatment with carbapenem antibiotics and loss of Bacteroides ovatus from the microbiome. In a mouse model of carbapenem-aggravated GVHD, introducing Bacteroides ovatus reduced severity of GVHD and improved survival. Bacteroides ovatus reduced degradation of colonic mucus by another intestinal commensal, Bacteroides thetaiotaomicron, via its ability to metabolize dietary polysaccharides into monosaccharides, which then inhibit mucus degradation by Bacteroides thetaiotaomicron and reduce GVHD-related mortality.

7.
Sci Transl Med ; 14(671): eabo3445, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36383683

RESUMO

Not all patients with cancer and severe neutropenia develop fever, and the fecal microbiome may play a role. In a single-center study of patients undergoing hematopoietic cell transplant (n = 119), the fecal microbiome was characterized at onset of severe neutropenia. A total of 63 patients (53%) developed a subsequent fever, and their fecal microbiome displayed increased relative abundances of Akkermansia muciniphila, a species of mucin-degrading bacteria (P = 0.006, corrected for multiple comparisons). Two therapies that induce neutropenia, irradiation and melphalan, similarly expanded A. muciniphila and additionally thinned the colonic mucus layer in mice. Caloric restriction of unirradiated mice also expanded A. muciniphila and thinned the colonic mucus layer. Antibiotic treatment to eradicate A. muciniphila before caloric restriction preserved colonic mucus, whereas A. muciniphila reintroduction restored mucus thinning. Caloric restriction of unirradiated mice raised colonic luminal pH and reduced acetate, propionate, and butyrate. Culturing A. muciniphila in vitro with propionate reduced utilization of mucin as well as of fucose. Treating irradiated mice with an antibiotic targeting A. muciniphila or propionate preserved the mucus layer, suppressed translocation of flagellin, reduced inflammatory cytokines in the colon, and improved thermoregulation. These results suggest that diet, metabolites, and colonic mucus link the microbiome to neutropenic fever and may guide future microbiome-based preventive strategies.


Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Neutropenia , Camundongos , Animais , Propionatos , Verrucomicrobia , Muco/metabolismo , Mucinas/metabolismo , Dieta , Neutropenia/metabolismo , Neoplasias/metabolismo
8.
Semin Hematol ; 57(1): 13-18, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32690139

RESUMO

In recent years, the microbiota has been implicated as a key factor associated with both response and toxicity from immune checkpoint blockade therapy. Numerous studies have been published that specifically highlight the importance of the microbiome as a distinct influencer of anti-PD-1/PD-L1 and anti-CTLA-4 activity in cancer patients, but a full understanding of mechanisms behind these interactions has yet to be achieved. With greater insight into how the microbiome can modulate immune checkpoint blockade comes the potential to target the microbiome to improve response rates and minimize toxicities. This mini-review looks at noteworthy studies that have explored the relationship between the microbiome and immune checkpoint blockade response and toxicity in both preclinical and clinical studies, with an emphasis on current hypotheses regarding mechanisms of action and potential microbiome-targeted therapeutic strategies under development.


Assuntos
Microbioma Gastrointestinal/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA