Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Phys Chem Chem Phys ; 26(1): 352-364, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38063502

RESUMO

A significant challenge for effective biomass utilization and upgrading is catalysis. This research paper focuses on the conversion of xylose into xylitol, a valuable chemical used in the pharmaceutical and food industries. The primary objective is to design more efficient and cost-effective catalysts for this conversion process. The study investigates the use of Ni-bimetallic catalysts by employing a first-principles technique. Catalyst models derived from subsets of Ni (111) surfaces with various transition metals (M = Ti, V, Cr, Fe, Co, and Cu) are examined. The catalyst surfaces are screened based on the rate-determining step (RDS) involved in the conversion of xylose to xylitol, with Ni (111) serving as a reference. Electronic structure calculations are used to analyze the activities of the investigated Ni-bimetallic catalysts relative to the RDS. The results show that certain bimetallic surfaces exhibit significantly lower kinetic barriers compared to the Ni (111) surface. The hydrogenation process when investigated using different transition state paths, reveals that hydrogenation commences at the carbon atom of the carbonyl group of xylose after the ring-opening step. Stability segregation tests demonstrate varying behaviors among the screened catalysts, with Ni (111)/Cr/Ni showing greater stability than Ni (111)/Co. This study sheds light on the theoretical design of catalysts for xylose conversion, providing insights for the development of more efficient and active catalysts for industrial applications. The research highlights the significance of theoretical methodologies in tailoring catalyst surfaces to optimize their performance in biomass upgrading.

2.
Phys Chem Chem Phys ; 23(46): 26195-26208, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34812819

RESUMO

There is currently no theoretical study on the hydrogenation of xylose to xylitol on a catalyst's surface, limiting proper understanding of the reaction mechanisms and the design of effective catalysts. In this study, DFT techniques were used for the first time to investigate the mechanisms of xylose to xylitol conversion on five notable transition metal (TM) surfaces: Ru(0001), Pt(111), Pd(111), Rh(111), and Ni(111). Two transition state (TS) paths were investigated: TS Path A and TS Path B. The TS Path B, which was further subdivided into TS Path B1 and B2, was proposed to be the minimum energy path (MEP) for the reaction process. According to our computational results, the MEP for this reaction begins with the structural rearrangement of cyclic xylose into its acyclic form prior to step-wise hydrogenation. The rate-determining step (RDS) on Ru(0001), Pt(111), Pd(111), and Ni(111) was discovered to be the ring-opening process via C-O bond scission of cyclic xylose. On Rh(111), however, the RDS was found to be the first hydrogenation stage, leading to the hydrogenation intermediate. Furthermore, based on the RDS barrier, our results revealed that the activities of the tested TM surfaces follow the trend: Ru(0001) > Rh(111) ≥ Ni(111) > Pd(111) > Pt(111). This result demonstrates the higher activity of Ru(0001) compared to other surfaces used for xylose hydrogenation. It correlates with experimental trends in relation to Ru(0001) superiority and provides the basis for understanding the theoretical design of economical and more active catalysts for xylitol production.

3.
Phys Chem Chem Phys ; 19(33): 21987-21995, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28808708

RESUMO

There is growing interest in alkaline water electrolysis as a sustainable approach for producing hydrogen, but developing efficient and inexpensive catalysts for the oxygen evolution reaction, which can limit the operational efficiency of water electrolysis due to its considerable overpotential, is regarded as the most overriding challenge. Therefore, significant progress has been made in developing catalysts with transition metal and carbon materials as alternative catalysts. Here, we prepared cobalt containing carbon nanofibers via a facile route of electrospinning and pyrolysis, and metal leached carbon nanofibers were also prepared by subsequently leaching the metal. Despite metal leaching, the latter ones still show comparable activity and stability with iridium black in alkaline water electrolysis. After detailed physicochemical and electrochemical characterizations, we revealed that graphitic edge plane rich carbon is mainly responsible for the activity of our material rather than embedded metal species. In addition, the metal plays a role in forming the specific carbon structure along with improving graphitization based on the catalytic graphitization. This result indicates the importance of the graphitic edge plane and might be helpful to understand carbon anodes for alkaline water electrolysis.

4.
J Chem Phys ; 142(3): 034707, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25612725

RESUMO

The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

5.
Phys Chem Chem Phys ; 16(22): 10727-33, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24756238

RESUMO

The role of samarium (Sm) 4f states and Sm-perturbed O 2p states in determining the sulfur tolerance of Sm-doped CeO2 was elucidated by using the density functional theory (DFT) + U calculation. We find that the sulfur tolerance of Sm-doped CeO2 is closely related to the modification of O 2p states by the strong interaction between Sm 4f and O 2p states. In particular, the availability of unoccupied O 2p states near the Fermi level is responsible for enhancing the sulfur tolerance of Sm-doped CeO2 compared to the pure CeO2 by increasing the activity of the surface lattice oxygen toward sulfur adsorption, by weakening the interaction between Sm-O, and by increasing the migration tendency of the subsurface oxygen ion toward the surface.

6.
Chem Soc Rev ; 42(12): 5002-13, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23446819

RESUMO

Supported gold nanoparticles have recently been shown to possess intriguing catalytic activity for hydrogenation reactions, particularly for selective hydrogenation reactions. However, fundamental studies that can provide insight into the reaction mechanisms responsible for this activity have been largely lacking. In this tutorial review, we highlight several recent model experiments and theoretical calculations on a well-structured gold surface that provide some insights. In addition to the behavior of hydrogen on a model gold surface, we review the reactivity of hydrogen on a model gold surface in regards to NO2 reduction, chemoselective C=O bond hydrogenation, ether formation, and O-H bond dissociation in water and alcohols. Those studies indicate that atomic hydrogen has a weak interaction with gold surfaces which likely plays a key role in the unique hydrogenative chemistry of classical gold catalysts.

7.
J Colloid Interface Sci ; 665: 922-933, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569309

RESUMO

Utilizing renewable electricity for water electrolysis offers a promising way for generating high-purity hydrogen gases while mitigating the emission of environmental pollutants. To realize the water electrolysis, it is necessary to develop highly active and precious metal-free electrocatalyst for oxygen evolution reaction (OER) which incurs significant overpotential due to its complicated four-electron transfer mechanism. Hence, we propose a facile preparation method for hollow-structured Fe and F dual-doped CoS2 nanosphere (Fe-CoS2-F) as an efficient OER electrocatalyst. The uniform hollow and porous structure of Fe-CoS2-F enlarge the specific surface area and increase the number of exposed active sites. Furthermore, the Fe and F dual-dopants synergistically contributed to the adjustment of electronic structure, thereby promoting the adsorption/desorption of oxygen-containing reaction intermediates on active sites during the alkaline OER procedure. As a result, the prepared Fe-CoS2-F exhibits outstanding OER activity, characterized by a low overpotential of 298 mV to achieve a current density of 10 mA cm-2 and a Tafel slope as small as 46.0 mV dec-1. Based on computational theoretical calculations, the introduction of the dual-dopants into CoS2 structure reduce the excessively strong adsorption energy of reaction intermediate in the rate determining step, leading to effectively promoted electrocatalytic cycle for OER in alkaline environment. This study presents an effective strategy for preparing noble metal-free OER electrocatalysts with promising potential for large-scale industrial water electrolysis.

8.
J Am Chem Soc ; 135(1): 436-42, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23230894

RESUMO

We have discovered that NO(2) is reduced to NO at 77 K by hydrogen precovered gold in vacuum. Here, we investigate the partial reduction of NO(2) to NO on an atomic-hydrogen populated model gold catalyst for a more fundamental understanding of the surface chemistry of hydrogenation. Gold-based catalysts have been found to be active for many hydrogenation reactions, but few related fundamental studies have been conducted. Our experimental results reveal a high catalytic activity for gold: indeed, NO(2) is reduced to NO with 100% conversion and 100% selectivity at temperatures lower than 120 K. Density functional theory calculations and reflection-absorption infrared spectroscopy measurements indicate that HNO(2) and N(2)O(3) are intermediates which are highly dependent on surface hydrogen concentrations; subsequent hydrogenation of HNO(2) and dissociation of N(2)O(3) upon annealing induces the production of NO and H(2)O.


Assuntos
Ouro/química , Hidrogênio/química , Óxido Nítrico/química , Óxido Nítrico/síntese química , Temperatura , Catálise , Oxirredução , Teoria Quântica
9.
J Chem Phys ; 139(20): 201104, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24289337

RESUMO

Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd3Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd3Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts.

10.
Nanoscale Adv ; 4(13): 2913-2921, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36132005

RESUMO

As an extension of single-atom catalysts, the development of double-atom catalysts with high electrocatalytic activity for the oxygen evolution reaction (OER) is vital to facilitate hydrogen production and industrial applications. The CoM (M = 3d, 4d, 5d block metals) homo and double-atom catalysts supported on nitrogen-doped graphene (CoM/N4G) were prepared for electrochemical water oxidation under alkaline conditions, and the electrocatalytic activity was studied through density functional theory (DFT) calculations. The hetero CoCu/N4G double-atom catalyst indicated the highest OER activity with an onset potential of 0.83 V, while the homo Co2/N4G catalyst showed a higher onset potential of 1.69 V. The decoupled strain, dopant, and configurational effects based on the notable differences between the homo Co2/N4G and CoCu/N4G explained the enhanced OER activity, implying that the Cu dopant has a crucial impact on boosting the reactivity by reducing the affinity of reaction intermediates. The enhancement could also be understood from the perspective of the electron structure characteristic through d-orbital resolved density of states (ORDOS) (d z 2 , d xz , d yz , d xy , and d x 2-y 2 ) analysis. From the ORDOS analysis, we found an apparent alteration of the key orbitals between Co2/N4G (d z 2 , d xz , and d yz ) and CoCu/N4G (d z2, d xz , d yz , and d xy ) with a substantial change in the overlap ratio (X d). This theoretical study offers beneficial insights into developing a strategy for efficient OER catalysts utilizing a double-atom structure.

11.
Membranes (Basel) ; 13(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36676830

RESUMO

The development of stable and durable hydrogen (H2) separation technology is essential for the effective use of H2 energy. Thus, the use of H2 permeable membranes, made of palladium (Pd), has been extensively studied in the literature. However, Pd has considerable constraints in large-scale applications due to disadvantages such as very high cost and H2 embrittlement. To address these shortcomings, copper (Cu) and Pd were deposited on Ta to fabricate a composite H2 permeable membrane. To this end, first, Pd was deposited on a tantalum (Ta) support disk, yielding 7.4 × 10-8 molH2 m-1 s-1 Pa-0.5 of permeability. Second, a Cu-Pd alloy on a Ta support was synthesized via stepwise electroless plating and plasma sputtering to improve the durability of the membrane. The use of Cu is cost-effective compared with Pd, and the appropriate composition of the PdCu alloy is advantageous for long-term H2 permeation. Despite the lower H2 permeation of the PdCu/Ta membrane (than the Pd/Ta membrane), about two-fold temporal stability is achieved using the PdCu/Ta composite. The degradation process of the Ta support-based H2 permeable membrane is examined by SEM. Moreover, thermocatalytic H2 dissociation mechanisms on Pd and PdCu were investigated and are discussed numerically via a density functional theory study.

12.
J Hazard Mater ; 403: 124085, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265065

RESUMO

The effects of noble metal (M = Ag, Au, Pd, Pt, and Rh) on CeO2 in enhancing the activity toward soot oxidation were studied through experimental methods and density functional theory (DFT) calculations. Each noble metal (3 mol.%) was supported on CeO2 (M/CeO2) and the properties of the catalysts were verified by XRD, HRTEM, N2 physisorption, CO chemisorption, XPS, and H2-TPR results. The noble metal was highly dispersed over CeO2, except for Au due to the sintering of Au, and the reducibility of the catalysts was greatly improved according to degree of the interaction between each noble metal and CeO2. The activities of M/CeO2 catalysts for soot oxidation were better than that of CeO2, and followed the order Rh/CeO2 > Ag/CeO2 > Pt/CeO2 > Au/CeO2 > Pd/CeO2 > CeO2. Moreover, our DFT calculations showed that vacancy formation energy was gradually lowered in the following order: CeO2 > Pd4/CeO2 > Pt4/CeO2 > Au4/CeO2 = Ag4/CeO2 > Rh4/CeO2, which was similar order with experimental activity. In addition, the electronic states of the p and f orbitals of CeO2 were studied to compare with the occupied Ce 4f electrons, which affect the redox property. Rh/CeO2 and Ag/CeO2 showed the improved soot oxidation activity, with an enhanced ability to generate oxygen vacancy formation and oxygen adsorption and increased electron transfer. Consequently, the experimental and DFT calculation results revealed the roles of noble metals on ceria with respect to catalytic activity.

13.
Chem Asian J ; 16(22): 3630-3635, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34546639

RESUMO

Transition metal phosphides (TMPs) as ever-evolving electrocatalytic materials have attracted increasing attention in water splitting reactions owing to their cost-effective, highly active and stable catalytic properties. This work presents a facile synthetic route to NiCoP nanoparticles with Ru dopants which function as highly efficient electrocatalysts for oxygen evolution reaction (OER) in alkaline media. The Ru dopants induced a high content of Ni and Co vacancies in NiCoP nanoparticles, and the more defective Ru doped NiCoP phase than undoped NiCoP ones led to a greater number of catalytically active sites and improved electrical conductivity after undergoing electrochemical activation. The Ru doped NiCoP catalyst exhibited high OER catalytic performance in alkaline media with a low overpotential of 281 mV at 10 mA cm-2 and a Tafel slope of 42.7 mV dec-1 .

14.
ACS Nano ; 15(3): 5560-5566, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33621465

RESUMO

Herein, binary heteronanosheets made of ultrathin ReS2 nanosheets and reduced graphene oxide (RGO) with either a two-dimensional (2D) "sheet-on-sheet" architecture (2D ReS2/RGO) or a three-dimensional hierarchical structure (3D ReS2/RGO) are constructed through rational structure-engineering strategies. In the resultant 3D ReS2/RGO heteronanosheets, the ultrathin ReS2 nanosheets are bridged on the RGO surface through Re-O bonds in a vertically oriented manner, which endows the heteronanosheets with open frameworks and a hierarchical porous structure. In sharp contrast to the 2D ReS2/RGO, the 3D ReS2/RGO heteronanosheets are featured with abundant active sites and channels for efficient electrolyte ions transport. This, coupled with the strong affinity toward oxygen-containing intermediates intrinsically associated with the binary ReS2/RGO structure, imparts excellent oxygen reduction performance to the 3D ReS2/RGO heteronanosheets for potential applications in fuel cells and metal-air batteries.

15.
ACS Appl Mater Interfaces ; 13(21): 24624-24633, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34003000

RESUMO

A simple wet-chemical route for the preparation of core-shell-structured catalysts was developed to achieve high oxygen reduction reaction (ORR) activity with a low Pt loading amount. Nickel nitride (Ni3N) nanoparticles were used as earth-abundant metal-based cores to support thin Pt layers. To realize the site-selective formation of Pt layers on the Ni3N core, hydrogen molecules (H2) were used as a mild reducing agent. As H2 oxidation is catalyzed by the surface of Ni3N, the redox reaction between H2 and Pt(IV) in solution was facilitated on the Ni3N surface, which resulted in the selective deposition of Pt on Ni3N. The controlled Pt formation led to a subnanometer (0.5-1 nm)-thick Pt shell on the Ni3N core. By adopting the core-shell structure, higher ORR activity than the commercial Pt/C was achieved. Electrochemical measurements showed that the thin Pt layer on Ni3N nanoparticle exhibits 5 times higher mass activity and specific activity than that of commercial Pt/C. Furthermore, it is expected that the proposed simple wet-chemical method can be utilized to prepare various transition-metal-based core-shell nanocatalysts for a wide range of energy conversion reactions.

16.
Sci Adv ; 7(30)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34290086

RESUMO

Unsupported Pt electrocatalysts demonstrate excellent electrochemical stability when used in polymer electrolyte membrane fuel cells; however, their extreme thinness and low porosity result in insufficient surface area and high mass transfer resistance. Here, we introduce three-dimensionally (3D) customized, multiscale Pt nanoarchitectures (PtNAs) composed of dense and narrow (for sufficient active sites) and sparse (for improved mass transfer) nanoscale building blocks. The 3D-multiscale PtNA fabricated by ultrahigh-resolution nanotransfer printing exhibited excellent performance (45% enhanced maximum power density) and high durability (only 5% loss of surface area for 5000 cycles) compared to commercial Pt/C. We also theoretically elucidate the relationship between the 3D structures and cell performance using computational fluid dynamics. We expect that the structure-controlled 3D electrocatalysts will introduce a new pathway to design and fabricate high-performance electrocatalysts for fuel cells, as well as various electrochemical devices that require the precision engineering of reaction surfaces and mass transfer.

17.
ACS Nano ; 15(7): 11218-11230, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34143611

RESUMO

Oxygen-based electrocatalysis is an integral aspect of a clean and sustainable energy conversion/storage system. The development of economic bifunctional electrocatalysts with high activity and durability during reversible reactions remains a great challenge. The tailored porous structure and separately presented active sites for oxygen reduction and oxygen evolution reactions (ORR and OER) without mutual interference are most crucial for achieving desired bifunctional catalysts. Here, we report a hybrid composed of sheath-core cobalt oxynitride (CoOx@CoNy) nanorods grown perpendicularly on N-doped carbon nanofiber (NCNF). The brush-like CoOx@CoNy nanorods, composed of metallic Co4N cores and oxidized surfaces, exhibit excellent OER activity (E = 1.69 V at 10 mA cm-2) in an alkaline medium. Although pristine NCNF or CoOx@CoNy alone had poor catalytic activity in the ORR, the hybrid showed dramatically enhanced ORR performance (E = 0.78 V at -3 mA cm-2). The experimental results coupled with a density functional theory (DFT) simulation confirmed that the broad surface area of the CoOx@CoNy nanorods with an oxidized skin layer boosts the catalytic OER, while the facile adsorption of ORR intermediates and a rapid interfacial charge transfer occur at the interface between the CoOx@CoNy nanorods and the electrically conductive NCNF. Furthermore, it was found that the independent catalytic active sites in the CoOx@CoNy/NCNF catalyst are continuously regenerated and sustained without mutual interference during the round-trip ORR/OER, affording stable operation of Zn-air batteries.

18.
Nanoscale ; 12(32): 17074-17082, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32785326

RESUMO

Developing highly efficient Ir-based electrocatalysts for the oxygen evolution reaction (OER) has been an important agenda in spearheading the water splitting technology. In this study, the synthesis of IrCo nanocacti on CoxSy nanocages (ICS NCs) is demonstrated by utilizing CoO@CoxSy nanoparticles as reactive nanotemplates. In addition to the high catalytic activities with a low overpotential of 281 mV at 10 mA cm-2 and an outstanding mass activity of 1285 mA mgIr-1 at 1.53 V, the ICS NCs endure a prolonged OER test for over 100 h, greatly outperforming other previously reported Ir-based electrocatalysts. This work suggests that the unique hetero-nanostructure of IrCo/CoxSy induces in situ S doping during electrochemical oxidation and the beneficial effect of S doping on the enhanced stability of ICS NCs for the OER.

19.
Adv Mater ; 32(51): e2002210, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32989883

RESUMO

A new direction for developing electrocatalysts for hydrogen fuel cell systems has emerged, based on the fabrication of 3D architectures. These new architectures include extended Pt surface building blocks, the strategic use of void spaces, and deliberate network connectivity along with tortuosity, as design components. Various strategies for synthesis now enable the functional and structural engineering of these electrocatalysts with appropriate electronic, ionic, and electrochemical features. The new architectures provide efficient mass transport and large electrochemically active areas. To date, although there are few examples of fully functioning hydrogen fuel cell devices, these 3D electrocatalysts have the potential to achieve optimal cell performance and durability, exceeding conventional Pt powder (i.e., Pt/C) electrocatalysts. This progress report highlights the various 3D architectures proposed for Pt electrocatalysts, advances made in the fabrication of these structures, and the remaining technical challenges. Attempts to develop design rules for 3D architectures and modeling, provide insights into their achievable and potential performance. Perspectives on future developments of new multiscale designs are also discussed along with future study directions.

20.
Nanoscale Horiz ; 5(5): 832-838, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364213

RESUMO

Electrochemical hydrogen peroxide (H2O2) production by the direct two-electron (2e-) oxygen reduction reaction (ORR) has received much attention as a promising alternative to the industrially developed anthraquinone fabrication process. Transition metal (M) and nitrogen doped carbon (M-N-C, M = Fe or Co) catalysts are known to be active for four electron ORR pathways via two + two electron transfer, where the former is for the ORR and the latter for the peroxide reduction reaction (PRR). Here, we report mesoporous N-doped carbon/manganese hybrid electrocatalysts composed of MnO and Mn-Nx coupled with N-doped carbons (Mn-O/N@NCs), which have led to the development of electrocatalysis towards the 2e- ORR route. Based on the structural and electrochemical characterization, the number of transferred electrons during the ORR on the Mn-O/N@NCs was found to be close to the theoretical value of the 2e- process, indicating their high activity toward H2O2. The favored ORR process arose due to the increased number of Mn-Nx sites within the mesoporous N-doped carbon materials. Furthermore, there was a strong indication that the PRR is significantly suppressed by adjacent MnO species, demonstrating its highly selective production of H2O2 (>80%) from the oxygen electrochemical process. The results of a real fuel cell device test demonstrated that an Mn-O/N@NC catalyst sustains a very stable current, and we attributed its outstanding activity to a combination of site-dependent facilitation of 2e- transfer and a favorable porosity for mass transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA