Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cells ; 47(5): 100060, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614390

RESUMO

Transcriptome analysis is widely used for current biological research but remains challenging for many experimental scientists. Here, we present a brief but broad guideline for transcriptome analysis, focusing on RNA sequencing, by providing the list of publicly available datasets, tools, and R packages for practical transcriptome analysis. This work will be useful for biologists to perform key transcriptomic analysis with minimum expertise in bioinformatics.


Assuntos
Biologia Computacional , Análise de Sequência de RNA , Humanos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Transcriptoma/genética
2.
Mol Cells ; 47(4): 100047, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508494

RESUMO

Aging is accompanied by the gradual deregulation of the transcriptome. However, whether age-dependent changes in the transcriptome are evolutionarily conserved or diverged remains largely unexplored. Here, we performed a meta-analysis examining the age-dependent changes in the transcriptome using publicly available datasets of 11 representative metazoans, ranging from Caenorhabditis elegans to humans. To identify the transcriptomic changes associated with aging, we analyzed various aspects of the transcriptome, including genome composition, RNA processing, and functional consequences. The use of introns and novel splice sites tended to increase with age, particularly in the brain. In addition, our analysis suggests that the age-dependent accumulation of premature termination codon-containing transcripts is a common feature of aging across multiple animal species. Using C. elegans as a test model, we showed that several splicing factors that are evolutionarily conserved and age-dependently downregulated were required to maintain a normal lifespan. Thus, aberrant RNA processing appears to be associated with aging and a short lifespan in various species.


Assuntos
Envelhecimento , Caenorhabditis elegans , Transcriptoma , Animais , Envelhecimento/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , Processamento Pós-Transcricional do RNA , Longevidade/genética
3.
Aging Cell ; 23(7): e14151, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38529797

RESUMO

Classical genetic analysis is invaluable for understanding the genetic interactions underlying specific phenotypes, but requires laborious and subjective experiments to characterize polygenic and quantitative traits. Contrarily, transcriptomic analysis enables the simultaneous and objective identification of multiple genes whose expression changes are associated with specific phenotypes. Here, we conducted transcriptomic analysis of genes crucial for longevity using datasets with daf-2/insulin/IGF-1 receptor mutant Caenorhabditis elegans. Our analysis unraveled multiple epistatic relationships at the transcriptomic level, in addition to verifying genetically established interactions. Our combinatorial analysis also revealed transcriptomic changes associated with longevity conferred by daf-2 mutations. In particular, we demonstrated that the extent of lifespan changes caused by various mutant alleles of the longevity transcription factor daf-16/FOXO matched their effects on transcriptomic changes in daf-2 mutants. We identified specific aging-regulating signaling pathways and subsets of structural and functional RNA elements altered by different genes in daf-2 mutants. Lastly, we elucidated the functional cooperation between several longevity regulators, based on the combination of transcriptomic and molecular genetic analysis. These data suggest that different biological processes coordinately exert their effects on longevity in biological networks. Together our work demonstrates the utility of transcriptomic dissection analysis for identifying important genetic interactions for physiological processes, including aging and longevity.


Assuntos
Caenorhabditis elegans , Longevidade , Transdução de Sinais , Transcriptoma , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mutação , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/genética , Transcriptoma/genética
4.
Autophagy ; : 1-15, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38963038

RESUMO

Sexual dimorphism affects various biological functions, including immune responses. However, the mechanisms by which sex alters immunity remain largely unknown. Using Caenorhabditis elegans as a model species, we showed that males exhibit enhanced immunity against various pathogenic bacteria through the upregulation of HLH-30 (Helix Loop Helix 30/TFEB (transcription factor EB)), a transcription factor crucial for macroautophagy/autophagy. Compared with hermaphroditic C. elegans, males displayed increased activity of HLH-30/TFEB, which contributed to enhanced antibacterial immunity. atg-2 (AuTophaGy (yeast Atg homolog) 2) upregulated by HLH-30/TFEB mediated increased immunity in male C. elegans. Thus, the males appear to be equipped with enhanced HLH-30/TFEB-mediated autophagy, which increases pathogen resistance, and this may functionally prolong mate-searching ability with reduced risk of infection.Abbreviations: atg-2: AuTophaGy (yeast Atg homolog) 2; FUDR: 5-fluoro-2'-deoxyuridine; GSEA: gene set enrichment analysis; HLH-30: Helix Loop Helix 30; LC3: microtubule associated protein 1 light chain 3; NGM: nematode growth media; RNA-seq: RNA sequencing; SEM: standard error of the mean; TFEB: transcription factor EB; WT: wild-type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA