Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Immunity ; 41(5): 753-61, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25464854

RESUMO

Medullary thymic epithelial cells (mTECs) are crucial for central T cell self-tolerance. Although progenitors of mTECs have been demonstrated in thymic organogenesis, the mechanism for postnatal mTEC maintenance remains elusive. We demonstrate that implantation of embryonic TECs expressing claudin-3 and claudin-4 (Cld3,4) in a medulla-defective thymic microenvironment restores medulla formation and suppresses multiorgan autoimmunity throughout life. A minor SSEA-1(+) fraction within the embryonic Cld3,4(hi) TECs contained self-renewable clonogenic TECs, capable of preferentially generating mature mTECs in vivo. Adult SSEA-1(+)Cld3,4(hi) TECs retained mTEC reconstitution potential, although the activity decreased. The clonogenicity of TECs also declined rapidly after birth in wild-type mice, whereas it persisted in Rag2(?/?) adult mice with defective thymopoiesis. The results suggest that unipotent mTEC-restricted stem cells that develop in the embryo have the capacity to functionally reconstitute the thymic medulla long-term, thus ensuring lifelong central T cell self-tolerance.


Assuntos
Organogênese/imunologia , Tolerância a Antígenos Próprios/imunologia , Células-Tronco/imunologia , Linfócitos T/imunologia , Timo/citologia , Animais , Antígenos Glicosídicos Associados a Tumores/biossíntese , Diferenciação Celular/imunologia , Células Cultivadas , Claudina-3/biossíntese , Claudina-4/biossíntese , Proteínas de Ligação a DNA/genética , Células Epiteliais/citologia , Células Epiteliais/imunologia , Antígenos CD15/biossíntese , Camundongos , Camundongos Knockout , Antígenos Embrionários Estágio-Específicos/biossíntese , Células-Tronco/citologia , Timo/imunologia
2.
Int Immunol ; 33(3): 171-182, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038259

RESUMO

T-cell development depends on the thymic microenvironment, in which endothelial cells (ECs) play a vital role. Interestingly, vascular permeability of the thymic cortex is lower than in other organs, suggesting the existence of a blood-thymus barrier (BTB). On the other hand, blood-borne molecules and dendritic cells bearing self-antigens are accessible to the medulla, facilitating central tolerance induction, and continuous T-precursor immigration and mature thymocyte egress occur through the vessels at the cortico-medullary junction (CMJ). We found that claudin-5 (Cld5), a membrane protein of tight junctions, was expressed in essentially all ECs of the cortical vasculatures, whereas approximately half of the ECs of the medulla and CMJ lacked Cld5 expression. An intravenously (i.v.) injected biotin tracer hardly penetrated cortical Cld5+ vessels, but it leaked into the medullary parenchyma through Cld5- vessels. Cld5 expression in an EC cell line caused a remarkable increase in trans-endothelial resistance in vitro, and the biotin tracer leaked from the cortical vasculatures in Cldn5-/- mice. Furthermore, i.v.-injected sphingosine-1 phosphate distributed selectively into the medulla through the Cld5- vessels, probably ensuring the egress of CD3high mature thymocytes from Cld5- vessels at the CMJ. These results suggest that distinct Cld5 expression profiles in the cortex and medulla may control the BTB and the T-cell gateway to blood circulation, respectively.


Assuntos
Permeabilidade Capilar/fisiologia , Claudina-5/metabolismo , Linfócitos T/metabolismo , Timo/metabolismo , Junções Íntimas/fisiologia , Animais , Diferenciação Celular/imunologia , Linhagem Celular , Claudina-5/biossíntese , Células Endoteliais/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Linfócitos T/citologia , Timócitos/metabolismo
3.
J Immunol ; 205(8): 2008-2015, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32907997

RESUMO

Immune complexes (ICs) in blood are efficiently removed mainly by liver reticuloendothelial systems consisting of sinusoidal endothelial cells and Kupffer cells expressing FcγR. The bone marrow (BM) also has sinusoidal vasculatures, and sinusoidal BM endothelial cells (BMECs) bear unique function, including hematopoietic niches and traffic regulation of hematopoietic cells. In this study, we found that sinusoidal BMECs express FcγRIIb2, which is markedly increased in anemic conditions or by the administration of erythropoietin (Epo) in healthy mice. BMECs expressed Epo receptor (EpoR), and the Epo-induced increase in FcγRIIb2 expression was abolished in Epor-/- ::HG1-Epor transgenic mice, which lack EpoR in BMECs except for BM erythroblasts, suggesting the effect was directly mediated via EpoR on BMECs. Further, although BMECs hardly captured i.v.-injected soluble ICs in healthy mice, Epo administration induced a remarkable increase in the uptake of ICs in a FcγRIIb-dependent manner. Enhancement of the IC incorporation capacity by Epo was also observed in cultured BMECs in vitro, suggesting the direct effect of Epo on BMECs. Moreover, we found that i.v.-injected ICs in Epo-treated mice were more rapidly removed from the circulation than in PBS-treated mice. These results reveal a novel function of BMECs to efficiently remove circulating blood-borne ICs in an FcγRIIb2-mediated manner.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Células da Medula Óssea/imunologia , Células Endoteliais/imunologia , Eritropoetina/imunologia , Receptores de IgG/imunologia , Animais , Complexo Antígeno-Anticorpo/sangue , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Eritropoetina/sangue , Eritropoetina/genética , Camundongos , Camundongos Knockout , Receptores de IgG/sangue , Receptores de IgG/genética
4.
Int Immunol ; 32(4): 223-231, 2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-31967307

RESUMO

Acquired immune function shows recognizable changes over time with organismal aging. These changes include T-cell dysfunction, which may underlie diminished resistance to infection and possibly various chronic age-associated diseases in the elderly. T-cell dysfunction may occur at distinct stages, from naive cells to the end stages of differentiation during immune responses. The thymus, which generates naive T cells, shows unusually early involution resulting in progressive reduction of T-cell output after adolescence, but peripheral T-cell numbers are maintained through antigen-independent homeostatic proliferation of naive T cells driven by the major histocompatibility complex associated with self-peptides and homeostatic cytokines, retaining the diverse repertoire. However, extensive homeostatic proliferation may lead to the emergence of dysfunctional CD4+ T cells with features resembling senescent cells, termed senescence-associated T (SA-T) cells, which increase and accumulate with age. In situations such as chronic viral infection, T-cell dysfunction may also develop via persistent antigen stimulation, termed exhaustion, preventing possible immunopathology due to excessive immune responses. Exhausted T cells are developed through the effects of checkpoint receptors such as PD-1 and may be reversed with the receptor blockade. Of note, although defective in their regular T-cell antigen-receptor-mediated proliferation, SA-T cells secrete abundant pro-inflammatory factors such as osteopontin, reminiscent of an SA-secretory phenotype. A series of experiments in mouse models indicated that SA-T cells are involved in systemic autoimmunity as well as chronic tissue inflammation following tissue stresses. In this review, we discuss the physiological aspects of T-cell dysfunction associated with aging and its potential pathological involvement in age-associated diseases and possibly cancer.


Assuntos
Senescência Celular/imunologia , Linfócitos T/imunologia , Animais , Humanos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/patologia
5.
Int Immunol ; 31(3): 127-139, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30534943

RESUMO

Hassall's corpuscles (HCs) are composed of cornifying, terminally differentiated medullary thymic epithelial cells (mTECs) that are developed under the control of Aire. Here, we demonstrated that HC-mTECs show features of cellular senescence and produce inflammatory cytokines and chemokines including CXCL5, thereby recruiting and activating neutrophils to produce IL-23 in the thymic medulla. We further indicated that thymic plasmacytoid dendritic cells (pDCs) expressing IL-23 receptors constitutively produced Ifna, which plays a role in single positive (SP) cell maturation, in an Il23a-dependent manner. Neutrophil depletion with anti-Ly6G antibody injection resulted in a significant decrease of Ifna expression in the thymic pDCs, suggesting that thymic neutrophil activation underlies the Ifna expression in thymic pDCs in steady state conditions. A New Zealand White mouse strain showing HC hyperplasia exhibited greater numbers and activation of thymic neutrophils and pDCs than B6 mice, whereas Aire-deficient B6 mice with defective HC development and SP thymocyte maturation showed significantly compromised numbers and activation of these cells. These results collectively suggested that HC-mTECs with cell-senescence features initiate a unique cell activation cascade including neutrophils and pDCs leading to the constitutive IFNα expression required for SP T-cell maturation in the thymic medulla.


Assuntos
Senescência Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Interferon-alfa/biossíntese , Neutrófilos/imunologia , Neutrófilos/metabolismo , Timo/imunologia , Animais , Células Cultivadas , Células Dendríticas/citologia , Humanos , Interferon-alfa/metabolismo , Camundongos , Camundongos Endogâmicos , Neutrófilos/citologia , Timo/citologia
6.
Immunol Rev ; 271(1): 38-55, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27088906

RESUMO

The thymus consists of two distinct anatomical regions, the cortex and the medulla; medullary thymic epithelial cells (mTECs) play a crucial role in establishing central T-cell tolerance for self-antigens. Although the understanding of mTEC development in thymic organogenesis as well as the regulation of their differentiation and maturation has improved, the mechanisms of postnatal maintenance remain poorly understood. This issue has a central importance in immune homeostasis and physiological thymic involution as well as autoimmune disorders in various clinicopathological settings. Recently, several reports have demonstrated the existence of TEC stem or progenitor cells in the postnatal thymus, which are either bipotent or unipotent. We identified stem cells specified for mTEC-lineage that are generated in the thymic ontogeny and may sustain mTEC regeneration and lifelong central T-cell self-tolerance. This finding suggested that the thymic medulla is maintained autonomously by its own stem cells. Although several issues, including the relationship with other putative TEC stem/progenitors, remain unclear, further examination of mTEC stem cells (mTECSCs) and their regulatory mechanisms may contribute to the understanding of postnatal immune homeostasis. Possible relationships between decline of mTECSC activity and early thymic involution as well as various autoimmune disorders are discussed.


Assuntos
Doenças Autoimunes/imunologia , Autorrenovação Celular , Células Epiteliais/fisiologia , Células-Tronco/fisiologia , Linfócitos T/fisiologia , Timo/fisiologia , Animais , Diferenciação Celular , Humanos , Tolerância a Antígenos Próprios , Nicho de Células-Tronco , Timo/anatomia & histologia
7.
Cancer Sci ; 110(4): 1317-1330, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30767320

RESUMO

Adult long-term hematopoiesis depends on sustaining hematopoietic stem/progenitor cells (HSPC) in bone marrow (BM) niches, where their balance of quiescence, self-renewal, and hematopoietic differentiation is tightly regulated. Although various BM stroma cells that produce niche factors have been identified, regulation of the intrinsic responsiveness of HSPC to the niche factors remains elusive. We previously reported that mice deficient for Sipa1, a Rap1 GTPase-activating protein, develop diverse hematopoietic disorders of late onset. Here we showed that transplantation of BM cells expressing membrane-targeted C3G (C3G-F), a Rap1 GTP/GDP exchanger, resulted in the progressive decline of the numbers of HSPC repopulated in BM with time and impaired long-term hematopoiesis of all cell lineages. C3G-F/HSPC were sustained for months in spleen retaining hematopoietic potential, but these cells inefficiently contributed to overall hematopoietic reconstitution. C3G-F/HSPC showed enhanced proliferation and differentiation with accelerated progenitor cell exhaustion in response to stem cell factor (SCF). Using a Ba/F3 cell line, we confirmed that the increased basal Rap1GTP levels with C3G-F expression caused a markedly prolonged activation of c-Kit receptor and downstream signaling through SCF ligation. A minor population of C3G-F/HSPC also showed enhanced proliferation in the presence of thrombopoietin (TPO) compared to Vect/HSPC. Current results suggest an important role of basal Rap1 activation status of HSPC in their maintenance in BM for sustaining long-term adult hematopoiesis.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Transdução de Sinais , Proteínas de Ligação a Telômeros/metabolismo , Animais , Biomarcadores , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Imunofenotipagem , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Complexo Shelterina , Fator de Células-Tronco/farmacologia , Proteínas rap de Ligação ao GTP/metabolismo
8.
Eur J Immunol ; 48(10): 1663-1678, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30058200

RESUMO

Naïve phenotype (NP) T cells spontaneously initiate homeostatic proliferation (HP) as T-cell output is reduced because of physiologic thymic involution with age. However, the effects of sustained HP on overall immune function are poorly understood. We demonstrated that the NP CD8+ T cell population in adult thymectomized mice showing accelerated HP has an increased capacity for TCR-mediated interferon-γ and tumor necrosis factor α production, which is attributed to an increase in CXCR3+ cells in the NP CD8+ T cell population. The CXCR3+ NP CD8+ T cells developed during persistent HP with a slow cell division rate, but rarely during robust antigen-driven proliferation with a fast cell division rate. In ontogeny, the proportions of CXCR3+ cells in the NP CD8+ T cell population showed a biphasic profile, which was high at the newborn and aged stages. Upon transfer, CXCR3+ NP CD8+ T cells, but not CXCR3- NP CD8+ T cells, potently enhanced Th17-mediated inflammatory tissue reactions in vivo. Furthermore, CXCR3high NP CD8+ T cells with similar features were also detected at variable levels in healthy human blood. These results suggest that CXCR3+ NP CD8+ T cells generated during physiological HP significantly impact overall immunity at the immunologically vulnerable neonatal and aged stages.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Interferon gama/biossíntese , Receptores CXCR3/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Divisão Celular , Células Cultivadas , Citometria de Fluxo , Homeostase , Humanos , Interferon gama/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Células Th17/imunologia
9.
J Immunol ; 199(1): 138-148, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539430

RESUMO

Immune aging may underlie various aging-related disorders, including diminished resistance to infection, chronic inflammatory disorders, and autoimmunity. PD-1+ and CD153+ CD44high CD4+ T cells with features of cellular senescence, termed senescence-associated T (SA-T) cells, increasingly accumulate with age and may play a role in the immune aging phenotype. In this article, we demonstrate that, compared with young mice, the aged mouse environment is highly permissive for spontaneous proliferation of transferred naive CD4+ T cells, and it drives their transition to PD-1+ and CD153+ CD44high CD4+ T cells after extensive cell divisions. CD4+ T cells with essentially the same features as SA-T cells in aged mice are also generated from naive CD4+ T cells after extensive cell divisions under severe T-lymphopenic conditions by gamma irradiation or in developmental T cell defect, often in association with spontaneous germinal centers, as seen in aged mice. The increase in SA-T cells is significantly enhanced after thymectomy at the young adult stage, along with accelerated T cell homeostatic proliferation, whereas embryonic thymus implantation in the late adult stage markedly restricts the homeostatic proliferation of naive CD4+ T cells in the host and delays the increase in SA-T cells. Our results suggest that reduced T cell output due to physiologic thymic involution underlies the age-dependent accumulation of SA-T cells as a result of increasing homeostatic proliferation of naive CD4+ T cells. SA-T cells may provide a suitable biomarker of immune aging, as well as a potential target for controlling aging-related disorders.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD4-Positivos/imunologia , Senescência Celular , Timo/imunologia , Timo/fisiologia , Animais , Autoimunidade , Biomarcadores , Ligante CD30/imunologia , Diferenciação Celular , Centro Germinativo/imunologia , Receptores de Hialuronatos/imunologia , Ativação Linfocitária , Camundongos , Fenótipo , Receptor de Morte Celular Programada 1/imunologia , Timo/citologia
10.
Cell Struct Funct ; 42(2): 149-157, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29070774

RESUMO

Bone marrow stromal cells, including endothelial cells and mesenchymal stromal cells, support the maintenance, differentiation, and retention of hematopoietic stem and precursor cells under steady state conditions. At the onset of an emergency, such as severe blood loss or infection, the status of hematopoiesis in the bone marrow changes rapidly to ensure efficient production of cells of specific lineages; however, the function of stromal cells in emergency hematopoiesis has not been fully elucidated. Here, we unexpectedly found that B precursor, mature B, and T cells were released from the bone marrow into the blood circulation in the early phase of hemorrhagic anemia and phenylhydrazine-induced hemolytic anemia. Administration of erythropoietin, which normally increases in response to anemia, stimulated the egress of IgDlow immature B cells and recirculating mature B cells, which usually reside in the perivascular and intravascular space, from the bone marrow within 24 h. We also observed that endothelial cells in the bone marrow expressed erythropoietin receptor, and the expression levels were higher than those in other tissues. Erythropoietin stimulation of bone marrow endothelial cells induced the phosphorylation of STAT5 in vitro. Moreover, in vivo treatment with erythropoietin decreased surface VCAM1 expression and Cxcl12 transcription in bone marrow endothelial cells, both of which are essential for immature and mature B cell retention in the bone marrow. These results suggest that bone marrow endothelial cells can sense and rapidly respond to erythropoietin increase during anemia, thereby regulating B cell emigration from the bone marrow during emergency hematopoiesis.Key words: erythropoietin, anemia, endothelial cells, B cell, bone marrow microenvironment.


Assuntos
Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Eritropoetina/farmacologia , Animais , Linfócitos B/metabolismo , Células da Medula Óssea/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Células Endoteliais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
Eur J Immunol ; 46(4): 857-62, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26806881

RESUMO

Thymic epithelial cells (TECs) provide essential signals for αßT-cell development, and medullary TECs (mTECs) control T-cell tolerance through both negative selection and Foxp3(+) regulatory T (Treg) cell development. Although heterogeneity within the mTEC compartment is well studied, the molecular regulators of specific stages of mTEC development are still poorly understood. Given the importance of the RANK-RANKL axis in thymus medulla formation, we have used RANK Venus reporter mice to analyze the ontogeny of RANK(+) TECs during development and correlated RANK expression with mTEC stem cells defined by SSEA-1. In addition, we have investigated how requirements for the key regulators Foxn1 and Relb map to specific stages of mTEC development. Here, we show SSEA-1(+) mTEC stem cells emerge prior to RANK expression and are present in both nude and Relb(-/-) mice, providing direct evidence that mTEC lineage specification occurs independently of Foxn1 and Relb. In contrast, we show that Relb is necessary for the effective production of downstream RANK(+) mTEC progenitors. Collectively, our work defines stage-specific requirements for critical TEC regulators during medulla development, including the timing of Relb dependency, and provides new information on mechanisms controlling mTEC specification.


Assuntos
Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Células-Tronco/citologia , Linfócitos T Reguladores/citologia , Timo/embriologia , Fator de Transcrição RelB/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula/imunologia , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/metabolismo , Antígenos CD15/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T Reguladores/imunologia , Timo/citologia , Fator de Transcrição RelB/genética
12.
J Immunol ; 194(12): 5725-35, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25972477

RESUMO

Immune aging results in diminished adaptive immunity and increased risk for autoimmunity. We previously reported a unique PD-1(+) CD44(high)CD4(+) T cell population that increases with age in normal mice. In this study, we indicate that the age-dependent PD-1(+) CD44(high)CD4(+) T cells develop as unique T follicular (TF) cells in a B cell-dependent manner and consist of two subpopulations, as follows: CD153(+) cells preferentially secreting abundant osteopontin on TCR stimulation and CD153(-) cells that are apparently TCR anergic. These unique TF cells with essentially similar features increase much earlier and are accumulated in the spontaneous germinal centers (GCs) in lupus-prone female BWF1 (f-BWF1) mice. These TF cells showed characteristic cell-senescence features and developed in association with extensive CD4(+) T cell proliferation in vivo, suggesting replicative senescence. Although the CD153(+) TF cells were defective in proliferation capacity, they were quite stable and specifically responded to self GC-B cells to secret abundant osteopontin, which inhibited B cell receptor-induced GC-B cell apoptosis in f-BWF1 mice. Transfer of CD153(+) PD-1(+) CD4(+) T cells promoted the growth of spontaneous GCs, whereas administration of anti-osteopontin Ab suppressed GC enlargement and anti-nuclear Ab production and ameliorated clinical lupus nephritis of f-BWF1 mice. Current results suggest that senescent CD153(+) TF cells generated as a consequence of extensive endogenous CD4(+) T cell proliferation play an essential, if not sufficient, role in lupus pathogenesis in lupus-prone genetic background and may also contribute to an increased autoimmunity risk with age.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Senescência Celular/imunologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/metabolismo , Osteopontina/biossíntese , Animais , Apoptose , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ligante CD30/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Feminino , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunofenotipagem , Nefrite Lúpica/patologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Fenótipo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
13.
Eur J Immunol ; 45(11): 2985-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26362014

RESUMO

The thymus is the primary lymphoid organ for generating self-restricted and self-tolerant functional T cells. Its two distinct anatomical regions, the cortex and the medulla, are involved in positive and negative selection, respectively. Thymic epithelial cells (TECs) constitute the framework of this tissue and function as major stromal components. Extensive studies for more than a decade have revealed how TECs are generated during organogenesis; progenitors specific for medullary TECs (mTECs) and cortical TECs (cTECs) as well as bipotent progenitors for both lineages have been identified, and the signaling pathways required for the development and maturation of mTECs have been elucidated. However, little is known about the initial commitment of mTECs and cTECs during ontogeny, and how regeneration of both lineages is sustained in the postnatal/adult thymus. Recently, stem cell activities in TECs have been demonstrated, and TEC progenitors have been identified in the postnatal thymus. In this review, recent advances in studying the development and maintenance of TECs are summarized, and the possible mechanisms of thymic regeneration and involution are discussed.


Assuntos
Células Epiteliais/imunologia , Células-Tronco/imunologia , Timo/citologia , Timo/embriologia , Animais , Diferenciação Celular/imunologia , Células Epiteliais/citologia , Humanos , Células-Tronco/citologia , Timo/crescimento & desenvolvimento
14.
Proc Natl Acad Sci U S A ; 108(10): 4075-80, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21325057

RESUMO

Claudins (Clds) are crucial constituents of tight-junction strands in epithelial cells and have a central role in barrier functions. We show that Cld4 is unexpectedly expressed in normal thymic lymphocytes independently of tight junctions. The Cld4 expression was mostly confined to a portion of the CD4/CD8 double-positive (DP) cells. The proportion of Cld4(+) DP cells was markedly increased in MHC-I(-/-) II(-/-) mice but decreased in Rorγ(-/-) mice, and Cld4(+) DP cells contained higher levels of the rearranged Tcra transcripts involving the most distal Va and Ja segments than Cld4(-) DP cells. The Cld4 expression levels were reduced in E47-deficient mice in a gene dose-dependent manner, and ChIP analysis indicated that E2A and HEB were bound to the E-box sites of the putative Cldn4 promoter region. Functionally, Cld4 showed a potent T-cell receptor costimulatory activity by coligation with CD3. The Cld4 was distributed diffusely on the cell surface and associated with CD4/lck independently of CD3 in the resting thymocytes. However, Cld4 was strongly recruited to the immunological synapse on specific T-cell receptor engagement through antigen-presenting cells. In the fetal thymic organ culture, knockdown of Cldn4 resulted in the reduced generation of CD4/CD8 single-positive cells from the DP cells. These results suggest that Cld4 is induced by E-protein activity in the later stages of DP cells to increase the efficiency of positive selection, uncovering a hitherto unrecognized function of a Cld family protein.


Assuntos
Antígenos CD4/imunologia , Antígenos CD8/imunologia , Proteínas de Membrana/biossíntese , Timo/imunologia , Animais , Adesão Celular , Claudina-4 , Técnicas de Silenciamento de Genes , Sinapses Imunológicas , Proteínas de Membrana/genética , Camundongos , Timo/citologia
15.
J Exp Med ; 204(9): 2031-8, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-17682067

RESUMO

Trafficking of immune cells is controlled by directed migration of relevant cells toward chemotactic signals. Actin cytoskeleton undergoes continuous remodeling and serves as machinery for cell migration. The mDia family of formins and the Wiskott-Aldrich syndrome protein (WASP)-Arp2/3 system are two major actin nucleating-polymerizing systems in mammalian cells, with the former producing long straight actin filaments and the latter producing branched actin meshwork. Although much is known about the latter, the physiological functions of mDia proteins are unclear. We generated mice deficient in one mDia isoform, mDia1. Although mDia1(-/-) mice were born and developed without apparent abnormality, mDia1(-/-) T lymphocytes exhibited impaired trafficking to secondary lymphoid organs in vivo and showed reduced chemotaxis, little actin filament formation, and impaired polarity in response to chemotactic stimuli in vitro. Similarly, mDia1(-/-) thymocytes showed reduced chemotaxis and impaired egression from the thymus. These results suggest that mDia1 plays a distinct role in chemotaxis in T lymphocyte trafficking.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Movimento Celular , Linfócitos T/citologia , Animais , Contagem de Células , Movimento Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Quimiocinas/farmacologia , Forminas , Imunidade Celular/efeitos dos fármacos , Tecido Linfoide/citologia , Tecido Linfoide/efeitos dos fármacos , Tecido Linfoide/imunologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
16.
Nat Aging ; 3(1): 82-92, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118516

RESUMO

Whether age-associated defects in T cells impact the immunogenicity and reactogenicity of mRNA vaccines remains unclear. Using a vaccinated cohort (n = 216), we demonstrated that older adults (aged ≥65 years) had fewer vaccine-induced spike-specific CD4+ T cells including CXCR3+ circulating follicular helper T cells and the TH1 subset of helper T cells after the first dose, which correlated with their lower peak IgG levels and fewer systemic adverse effects after the second dose, compared with younger adults. Moreover, spike-specific TH1 cells in older adults expressed higher levels of programmed cell death protein 1, a negative regulator of T cell activation, which was associated with low spike-specific CD8+ T cell responses. Thus, an inefficient CD4+ T cell response after the first dose may reduce the production of helper T cytokines, even after the second dose, thereby lowering humoral and cellular immunity and reducing systemic reactogenicity. Therefore, enhancing CD4+ T cell response following the first dose is key to improving vaccine efficacy in older adults.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Idoso , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Vacinação/efeitos adversos , Imunidade Celular , Linfócitos T CD4-Positivos
17.
Proc Natl Acad Sci U S A ; 106(37): 15807-12, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19805226

RESUMO

Although altered T cell function plays a part in immunosenescence, the mechanisms remain uncertain. Here we identify a bona fide age-dependent PD-1(+) memory phenotype (MP) CD4(+) T cell subpopulation that hardly proliferates in response to T cell receptor (TCR) stimulation and produces abundant osteopontin at the cost of typical T cell lymphokines. These T cells demonstrate impaired repopulation in Rag2(-/-) mice, but a homeostatic proliferation in gamma-ray-irradiated mice. These T cells also reveal a unique molecular signature, including a strong expression of C/EBPalpha normally expressed in myeloid-lineage cells, with diminished c-Myc and cyclin D1. Transduction of Cebpa in regular CD4(+) T cells inhibited the TCR-mediated proliferation with c-Myc and cyclin D1 repression and caused a striking activation of Spp1 encoding osteopontin along with concomitant repression of T cell lymphokine genes. Although these T cells gradually increase in number with age and become predominant at the senescent stage in normal mice, the generation is robustly accelerated during leukemia. In both conditions, their predominance is associated with the diminution of specific CD4(+) T cell response. The results suggest that global T cell immunodepression in senescence and leukemia is attributable to the increase in PD-1(+) MP CD4(+) T cells expressing C/EBPalpha.


Assuntos
Envelhecimento/imunologia , Antígenos de Superfície/imunologia , Proteínas Reguladoras de Apoptose/imunologia , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Leucemia Experimental/imunologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Antígenos de Superfície/genética , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Linfócitos T CD4-Positivos/citologia , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Tolerância Imunológica , Memória Imunológica , Leucemia Experimental/metabolismo , Leucemia Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteopontina/genética , Fenótipo , Receptor de Morte Celular Programada 1
18.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34813503

RESUMO

Tertiary lymphoid tissues (TLTs) facilitate local T and B cell interactions in chronically inflamed organs. However, the cells and molecular pathways that govern TLT formation are poorly defined. Here, we identified TNF superfamily CD153/CD30 signaling between 2 unique age-dependent lymphocyte subpopulations, CD153+PD-1+CD4+ senescence-associated T (SAT) cells and CD30+T-bet+ age-associated B cells (ABCs), as a driver for TLT expansion. SAT cells, which produced ABC-inducing factors IL-21 and IFN-γ, and ABCs progressively accumulated within TLTs in aged kidneys after injury. Notably, in kidney injury models, CD153 or CD30 deficiency impaired functional SAT cell induction, which resulted in reduced ABC numbers and attenuated TLT formation with improved inflammation, fibrosis, and renal function. Attenuated TLT formation after transplantation of CD153-deficient bone marrow further supported the importance of CD153 in immune cells. Clonal analysis revealed that SAT cells and ABCs in the kidneys arose from both local differentiation and recruitment from the spleen. In the synovium of aged rheumatoid arthritis patients, T peripheral helper/T follicular helper cells and ABCs also expressed CD153 and CD30, respectively. Together, our data reveal a previously unappreciated function of CD153/CD30 signaling in TLT formation and propose targeting the CD153/CD30 signaling pathway as a therapeutic target for slowing kidney disease progression.


Assuntos
Injúria Renal Aguda/imunologia , Envelhecimento/imunologia , Ligante CD30/imunologia , Antígeno Ki-1/imunologia , Tecido Linfoide/imunologia , Transdução de Sinais/imunologia , Injúria Renal Aguda/genética , Envelhecimento/genética , Animais , Ligante CD30/genética , Linfócitos T CD4-Positivos/imunologia , Antígeno Ki-1/genética , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/genética
19.
Cancer Sci ; 102(4): 784-91, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21205094

RESUMO

Mice deficient for Spa-1 encoding Rap GTPase-activating protein develop myeloproliferative disorder (MPD) of late onset with frequent blast crises. The mechanisms for MPD development as well as the reasons for long latency, however, remain elusive. We demonstrate here that preleukemic, disease-free Spa-1(-/-) mice show reduced steady-state hematopoiesis and attenuated resistance to whole body γ-ray irradiation, which are attributable to the sustained p53 response in hematopoietic progenitor cells (HPCs). Preleukemic Spa-1(-/-) HPCs show c-Myc overexpression with increased p19Arf as well as enhanced γH2AX expression with activation of Atm/Chk pathway. We also show that deregulated Rap signaling in the absence of Spa-1 enhances post-transcriptional c-Myc stability and induces DNA damage in a p38MAPK-dependent manner, leading to p53 activation. Genetic studies indicate that the introduction of p53(+/-) and p53(-/-) mutations in Spa-1(-/-) mice results in the acceleration of typical MPD and rapid development of blastic leukemia, respectively. These results suggest that increased c-Myc expression and DNA damage in HPCs precede MPD development in Spa-1(-/-) mice, and the resulting p53 response functions as a barrier for the onset of MPD and blast crises progression.


Assuntos
Dano ao DNA , Proteínas Ativadoras de GTPase/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Transtornos Mieloproliferativos/etiologia , Proteínas Nucleares/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Crise Blástica/etiologia , Crise Blástica/metabolismo , Crise Blástica/patologia , Western Blotting , Citometria de Fluxo , Raios gama , Hematopoese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Transtornos Mieloproliferativos/metabolismo , Transtornos Mieloproliferativos/patologia , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Taxa de Sobrevida , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Irradiação Corporal Total , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo
20.
Cancer Sci ; 102(4): 828-36, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21251160

RESUMO

Recent studies suggest that SIPA1 encoding a Rap GTPase-activating protein SPA-1 is a candidate metastasis efficiency-modifying gene in human breast cancer. In this study, we investigated the expression and function of SPA-1 in human prostate cancer (CaP). Immunohistochemical studies of tumor specimens from CaP patients revealed a positive correlation of SPA-1 expression with disease progression and metastasis. The correlation was recapitulated in human CaP cell lines; LNCaP that rarely showed metastasis in SCID mice expressed an undetectable level of SPA-1, whereas highly metastatic PC3 showed abundant SPA-1 expression. Moreover, SIPA1 transduction in LNCaP caused prominent abdominal lymph node metastasis without affecting primary tumor size, whereas shRNA-mediated SIPA1 knockdown or expression of a dominant-active Rap1 mutant (Rap1V12) in PC3 suppressed metastasis. LNCaP transduced with SPA-1 (LNCaP/SPA-1) showed attenuated adhesion to the precoated extracellular matrices (ECM) including collagens and fibronectin, due to defective ECM-medicated Rap1 activation. In addition, LNCaP/SPA-1 showed a diminished level of nuclear Brd4, which is known to bind SPA-1, resulting in reduced expression of a series of ECM-related genes. These results suggest that SPA-1 plays an important role in controlling metastasis efficiency of human CaP by regulating the expression of and interaction with ECM in the primary sites.


Assuntos
Adesão Celular , Matriz Extracelular/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Western Blotting , Progressão da Doença , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Metástase Linfática , Masculino , Camundongos , Camundongos SCID , Invasividade Neoplásica , Proteínas Nucleares , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA