Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38400486

RESUMO

The Zero Trust safety architecture emerged as an intriguing approach for overcoming the shortcomings of standard network security solutions. This extensive survey study provides a meticulous explanation of the underlying principles of Zero Trust, as well as an assessment of the many strategies and possibilities for effective implementation. The survey begins by examining the role of authentication and access control within Zero Trust Architectures, and subsequently investigates innovative authentication, as well as access control solutions across different scenarios. It more deeply explores traditional techniques for encryption, micro-segmentation, and security automation, emphasizing their importance in achieving a secure Zero Trust environment. Zero Trust Architecture is explained in brief, along with the Taxonomy of Zero Trust Network Features. This review article provides useful insights into the Zero Trust paradigm, its approaches, problems, and future research objectives for scholars, practitioners, and policymakers. This survey contributes to the growth and implementation of secure network architectures in critical infrastructures by developing a deeper knowledge of Zero Trust.

2.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447966

RESUMO

Cloud computing plays an important role in every IT sector. Many tech giants such as Google, Microsoft, and Facebook as deploying their data centres around the world to provide computation and storage services. The customers either submit their job directly or they take the help of the brokers for the submission of the jobs to the cloud centres. The preliminary aim is to reduce the overall power consumption which was ignored in the early days of cloud development. This was due to the performance expectations from cloud servers as they were supposed to provide all the services through their services layers IaaS, PaaS, and SaaS. As time passed and researchers came up with new terminologies and algorithmic architecture for the reduction of power consumption and sustainability, other algorithmic anarchies were also introduced, such as statistical oriented learning and bioinspired algorithms. In this paper, an indepth focus has been done on multiple approaches for migration among virtual machines and find out various issues among existing approaches. The proposed work utilizes elastic scheduling inspired by the smart elastic scheduling algorithm (SESA) to develop a more energy-efficient VM allocation and migration algorithm. The proposed work uses cosine similarity and bandwidth utilization as additional utilities to improve the current performance in terms of QoS. The proposed work is evaluated for overall power consumption and service level agreement violation (SLA-V) and is compared with related state of art techniques. A proposed algorithm is also presented in order to solve problems found during the survey.


Assuntos
Algoritmos , Computação em Nuvem , Humanos
3.
J Environ Manage ; 325(Pt B): 116620, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323123

RESUMO

The structure of biochar produced at various pyrolysis temperatures influences metal geochemical behavior. Here, the impact of wheat straw-derived biochar (300, 500, and 700 °C) on the immobilization and transformation of metals in the contaminated soil-plant system was assessed. The findings of the sequential extraction revealed that biochar additives had a substantial influence on the speciation of Cr, Ni, Pb, and Zn in the contaminated soil. The lowest F1 (exchangeable and soluble fraction) + F2 (carbonate fraction) accounted for Cr (44%) in WB-300, Ni (43.87%) in WB-500, Pb (43.79%), and Zn (49.78%) in WB-700 with applied amendments of their total amounts. The characterization results indicated that high pyrolysis temperatures (300-700 °C) increased the carbon-containing groups with the potential to adsorb metals from the soil-plant environment. The bioconcentration and translocation factors (BCF and TF) were less than 1, indicating that metal concentration was restricted to maize roots and translocation to shoots. Reactive oxygen species (ROS) intracellularly influence metal interactions with plants. Electron paramagnetic resonance (EPR) was performed to determine hydroxyl radical generation (•OH) in plant segments to assess the dominance of free radicals (FRs). Consequently, the formation of •OH significantly depends on the pyrolysis temperature and the interaction with a contaminated soil-plant environment. Thus, metal transformation can be effectively decreased in the soil-plant environment by applying WB amendments.


Assuntos
Metais Pesados , Poluentes do Solo , Poluentes do Solo/análise , Chumbo , Carvão Vegetal/química , Solo/química , Metais Pesados/química , Radicais Livres
4.
Environ Geochem Health ; 45(5): 1655-1667, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35585373

RESUMO

Crops grown in areas contaminated by industrial and agricultural fluorine (F) have gained increasing attention, however F levels in different vegetables and lettuce cultivars are rarely reported. In situ-field experiment was designed to investigate the concentration, translocation, and health risks of F in 20 vegetable species and 25 lettuce cultivars. After the growth of 150 d for vegetables and 60 d for lettuce, F concentration (12.83-138.07 mg kg-1), translocation factor (0.16-6.32), and bio-concentration factor (1.90-13.73) varied significantly between vegetable species and lettuce cultivars. According to the hazard quotient values (based on the reference dose of F), all the vegetable species appears to pose no risk to human health, while 60% of the lettuce cultivars present potential health risks to children. Therefore, the limit value of F in vegetables for adults and children should be enacted in the future. Moreover, cabbage, green radish, spinach, leaf mustard, and Frisee lettuce (Huayu) were considered as a safe dietary product. These findings contributed to the safe cultivation of vegetables and the control of fluorosis in the areas contaminated by industrial and agricultural activities.


Assuntos
Brassica , Verduras , Criança , Adulto , Humanos , Lactuca , Flúor , Produtos Agrícolas
5.
J Environ Manage ; 302(Pt A): 114042, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34872180

RESUMO

Lignocellulose degraded maize straw (LMS) was prepared with the interaction of soil-indigenous microorganisms and further deployed to attenuate the Cd contamination in polluted soil. The Lignocellulose degrading ratio was determined and results revealed the significant degradation of cellulose, hemicellulose and lignin by 33.03, 26.7 and 15.97% respectively as compared to pristine maize straw (PS). Moreover, LMS was also categorized through FE-SEM, FTIR, BET analysis, elemental analysis and XPS technique and the analytical results indicated that lignocellulose structure in maize straw was successfully degraded and was involved in metal-ion complexation. Batch sorption trials revealed that Cd2+ sorption onto LMS was explained well by Langmuir isotherm and pseudo-second-order kinetic model. The LMS showed maximum adsorption capacities (9.84 mg g-1) for Cd2+ as compared to PS (3.30 mg g-1). Moreover, the soil incubation trials (60 days) depicted the availability of Cd decreased by 11.03 and 34.7% with PS and LMS application respectively. The addition of LMS significantly decreased the exchangeable fractions of Cd and ensued an increase in organic matter and Fe-Mn oxides bound fractions. This work clarified the LMS as a promising amendment for effective remediation of Cd-contaminated matrices.


Assuntos
Poluentes do Solo , Zea mays , Adsorção , Disponibilidade Biológica , Cádmio/análise , Lignina , Poluentes do Solo/análise
6.
J Environ Manage ; 303: 114148, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838377

RESUMO

In the present study, the viability of using manure (M), lime (L), and sepiolite (S) alone and in combinations (M/L, M/S, and M/L/S) was evaluated for the remediation of a red paddy soil artificially contaminated with three levels of cadmium (Cd- 0.6, 1, and 2 mg kg-1 soil). Experiments were performed in columns (to evaluate Cd leaching) and pots by growing rice plants (to study Cd accumulation in plants). Before their application, the tested amendments were thoroughly characterized using SEM, EDS and FT-IR spectroscopy. The leaching experiment indicates that the application of L or M/L significantly improved the pH of soil leachate collected at different time intervals. However, the use of M/L/S was found better in decreasing the Cd contents in collected leachate. The use of M/L efficiently decreased the DTPA metal extraction (0.19, 0.41, and 0.55 mg kg-1) as compared to the CK (0.35, 0.63, and 1.13 mg kg-1, respectively). The Cd speciation results depicted a 33% decrease in exchangeable Cd with M/L/S treatment when compared with control (55%). Moreover, the M/L/S treatment was more efficient in lowering the Cd phytoavailability and subsequent accumulation in rice grains (0.05, 0.09, and 0.08 mg kg-1). These findings demonstrate that the use of composite amendments is categorically effective as an in-situ remediation tool to decrease Cd leaching and availability in diverse contaminations.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Solo , Poluentes do Solo/análise , Espectroscopia de Infravermelho com Transformada de Fourier
7.
J Environ Manage ; 304: 114214, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34864519

RESUMO

The agricultural use of manure fertilizer increases the phosphorus (P) saturation of soils and the risk of colloidal P (Pcoll) release to aquatic ecosystems. Two experiments were conducted to identify whether Pteris vittata plantation can decrease Pcoll contents in two soils (Cambisol and Anthrosol) amended with various manure P rates (0, 10, 25, and 50 mg P kg-1 of soil). The total Pcoll contents in manured soil without P. vittata were 1.14-3.37 mg kg-1 (Cambisol), and 0.01-2.83 mg kg-1 (Anthrosol) across manure-P rates. The corresponding values with P. vittata were 0.97-2.33 mg kg-1 (Cambisol) and 0.005-1.6 mg kg-1 (Anthrosol). Experimentally determined colloidal minerals (Fe, Al, Ca), colloidal total organic carbon, Mehlich-3 nutrients (Fe, Al, and Ca), and the degree of P saturation were good predictors of Pcoll concentrations in both soils with and without P. vittata plantation. In unplanted soils, P adsorption decreased and the degree of P saturation increased which released more Pcoll. However, P. vittata plantation decreased the Pcoll release and P loss risk due to the increase of P adsorption and reduced DPS in both soils. The P fractions (NaOH, NH4F, and HCl-P) contributed to increase the P pool in planted soils which enhanced the bioavailability of Pcoll and increased the P. vittata biomass. It suggested that P. vittata plantation was an effective approach to reduce Pcoll release from manure amended soils.


Assuntos
Esterco , Pteris , Ecossistema , Fósforo , Solo
8.
Ecotoxicol Environ Saf ; 196: 110539, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32247959

RESUMO

Contamination of arable land with trace metals is a global environmental issue which has serious consequences on human health and food security. Present study evaluates the adsorption of cadmium (Cd) and lead (Pb) by using different quantities of composite of sepiolite, organic manure and lime (SOL) at field and laboratory scale (batch experiments). Characterization of SOL by SEM, EDS and FTIR spectroscopy revealed the presence of elemental and functional groups (hydroxyl, C⋯H and -COOH groups) on its surface. The field experiment was performed in a paddy field of gleysol having moderate contamination of Cd and Pb (0.64 mg kg-1 and 53.44 mg kg-1). Here, different rates of SOL (0.25, 0.5, 1, 1.5 and 2% w/w) were applied by growing low and high Cd accumulator rice cultivars. Application of SOL at 2% w/w showed considerable efficiency to increase soil pH (up to 19%) and to reduce available Cd (42-66%) and Pb (22-55%) as compared to the control. Moreover, its application reduced metal contents in roots, shoots and grains of rice by 31%, 36% and 72% (for Cd) and 41%, 81% and 84% (for Pb), respectively in low accumulator cultivar. Further, the batch sorption experiment was performed to evaluate the adsorption capacity of SOL in a wide range of contamination. Obtained sorption data was better fitted to the Langmuir equation. Our results highlight the strong efficiency of composite treatment for an enhanced in-situ metal immobilization under field and lab conditions. Further, applied treatments greatly reduced the metal contents in rice grains. In a nut shell, application of SOL in a contaminated gleysol should be considered for soil remediation and safe food production.


Assuntos
Cádmio/química , Compostos de Cálcio/química , Chumbo/química , Silicatos de Magnésio/química , Esterco , Óxidos/química , Adsorção , Disponibilidade Biológica , Cádmio/farmacocinética , Chumbo/farmacocinética , Oryza/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/química , Poluentes do Solo/farmacocinética
9.
Ecotoxicol Environ Saf ; 187: 109857, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31683201

RESUMO

Forty oilseed sunflower cultivars were screened in two soil types for phytoremediation of Cd coupled with maximum biomass yield and oil production. Several cultivars exhibited a significant difference in biomass and yield with enhanced uptake in shoots and low accumulation in roots from two Cd-contaminated soil types, an Oxisol and an Iceptisol. The Transfer Factor of Cd was >1 in several cultivars in both soil types, where as a significant difference in phytoextraction of Cd was observed in the Oxisol (acidic soil), greater than in the Inceptisol (alkaline soil). The results revealed that of the 40 cultivars, S9178, Huanong 667in the Oxisol and cvs. DW 667, HN 667, Huanong 667 and 668F1 in the Inceptisol showed a high biomass, better yield and enhanced accumulation of Cd in the shoots but a lesser accumulation in oil. The screened cultivar S 9178 produced the greatest amount of oil (55.6%) with 77% oleic acid, which makes it suitable for human consumption. Cultivar Huanong 667 was found to be the highest accumulating cultivar in both soil types. It is therefore suggested that some sunflower cultivars do exhibit phytoremediation potential together with agro-production potential.


Assuntos
Cádmio/análise , Helianthus/crescimento & desenvolvimento , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Biomassa , Cádmio/metabolismo , Helianthus/metabolismo , Humanos , Óleos de Plantas/química , Raízes de Plantas/química , Poluentes do Solo/metabolismo
10.
Int J Phytoremediation ; 22(9): 972-985, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524834

RESUMO

Information is needed for comparative assessment and agronomic practices for phytoavoidation in multi-pollutant field. A field study was conducted to explore 97 Brassica pekinensis L. genotypes with permissible limit of contaminants growing in a severely Cd, moderately nitrate and slightly Pb multi-polluted field. Thirteen genotypes, i.e. KGZY, CXQW, CAIB, JINL, JQIN, JFEN, WMQF, XLSH, TAIK, BJXS, JUKA, XYJQ and GQBW, were identified with permissible limit for nitrate, Cd and Pb based on their resistance to heavy metal and nitrate accumulation in leaves when grown in co-contaminated soils. Furthermore, the correlation between essential and toxic elements concentrations in plant of B. pekinensis were inconsistent. Generally speaking, application of increasing Ca, K and S fertilizers in appropriate forms and dosages tended to increase the yield and quality of B. pekinensis cultivated in multi-pollutant field.


Assuntos
Brassica , Poluentes Ambientais , Poluentes do Solo/análise , Biodegradação Ambiental , Cádmio/análise , Genótipo , Chumbo , Solo
11.
J Environ Manage ; 257: 109999, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868649

RESUMO

The present study evaluated the efficiency of pre-selected composite amendments (CA-1: biochar-lime-sepiolite-zeolite and CA-2: manure-lime-sepiolite) for immobilization and sorption of Cd and Pb in field and batch sorption experiments. The field experiment was performed in a co-contaminated clay purple soil (stagnic anthrosols). Along with a control experiment (T1), CA-1 and CA-2 were tested at different rates including 750, 1500, 3000 and 6000 kg ha-1 by growing wheat as the test crop. The obtained results revealed that the highest dose of both composites (T5: 6000 kg ha-1 and T9: 6000 kg ha-1) increased the soil pH to 6.85 and 6.81, respectively as compared to the control (5.63). DTPA-extractable Cd and Pb contents decreased with composite treatments (T7 and T4) at harvest stage samples. Metal fractionation depicted that application of amendments decreased the exchangeable fraction at harvesting stage. Application of CA-2 and CA-1 (3000 kg ha-1) significantly increased the plant biomass (by 28% and 24%, respectively) and grain yield (by 26% and 22%, respectively) of wheat. Furthermore, batch sorption experiment results revealed that Langmuir adsorption model better fitted the sorption results with R2 values ranging between 0.99 and 0.91 for Cd and Pb, respectively. CA-1 and CA-2 exhibited the maximum adsorption capacity for Cd with no significant difference among treatments but Pb adsorption capacity was highest in CA-1 followed by CA-2 and control. The results of our experiments revealed that the application of organics combined with inorganic materials enhanced Cd and Pb immobilization and sorption, consequently reducing metals availability in laboratory and field conditions. Moreover, for field trials, application of the composite amendments at 3000 kg ha-1 emerged as the suitable treatment for tested wheat-grown area.


Assuntos
Esterco , Poluentes do Solo , Cádmio , Carvão Vegetal , Chumbo , Solo
12.
J Environ Sci (China) ; 87: 24-38, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31791497

RESUMO

Phytoremediation is a valuable technology for mitigating soil contamination in agricultural lands, but phytoremediation without economic revenue is unfeasible for land owners and farmers. The use of crops with high biomass and bioenergy for phytoremediation is a unique strategy to derive supplementary benefits along with remediation activities. Sunflower (Helianthus annuus L.) is a high-biomass crop that can be used for the phytoremediation of polluted lands with additional advantages (biomass and oil). In this study, 40 germplasms of sunflower were screened in field conditions for phytoremediation with the possibility for oil and meal production. The study was carried out to the physiological maturity stage. All studied germplasms mopped up substantial concentrations of Pb, with maximum amounts in shoot > root > seed respectively. The phytoextraction efficiency of the germplasm was assessed in terms of the Transfer factor (TF), Metal removal efficiency (MRE) and Metal extraction ratio (MER). Among all assessed criteria, GP.8585 was found to be most appropriate for restoring moderately Pb-contaminated soil accompanied with providing high biomass and high yield production. The Pb content in the oil of GP.8585 was below the Food safety standard of China, with 59.5% oleic acid and 32.1% linoleic acid. Moreover, amino acid analysis in meal illustrated significant differences among essential and non-essential amino acids. Glutamic acid was found in the highest percentage (22.4%), whereas cysteine in the lowest percentage (1.3%). Therefore, its efficient phytoextraction ability and good quality edible oil and meal production makes GP.8585 the most convenient sunflower germplasm for phytoremediation of moderately Pb-contaminated soil, with fringe benefits to farmers and landowners.


Assuntos
Biodegradação Ambiental , Helianthus/fisiologia , Chumbo , Poluentes do Solo/análise , Agricultura , Animais , Asteraceae , Biomassa , China , Produtos Agrícolas , Poluentes Ambientais , Helianthus/química , Humanos , Metais Pesados , Sementes/química , Solo
13.
Ecotoxicol Environ Saf ; 171: 190-198, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30605848

RESUMO

The identification of high yield genotypes that are capable of accumulating multiple heavy metals in the non-edible parts (roots and shoots), but not in the edible parts (seeds) and have desired nutritional value is necessary for accomplishing phytoremediation coupled with agro-production. In this study, 17 fava bean genotypes were screened in two different field conditions to examine their phytoremediation potential in terms of uptake and translocation of Cd and Pb. Ten genotypes, LBAO, JNJX, DCAN, QXCJ, QIKM, LXYC, YDL6, RBCD, QPID and ZHW6 were found as the best accumulators for Cd and Pb with permissible limit of metals in seeds. The concentration of plant nutrients were genotype and soil type dependent and there was a significant correlation between these two factors. Furthermore, the three genotypes DCAN, LBAO and LXYC showed best performance in alluvial soil type while QPID, RBCD and LXYC were the best in red soil type. Genotype LXYC was similar for both soil types and appeared to be the best fit for phytoremediation coupled with agro-production for slightly or moderately Cd and Pb co-contaminated soil. Therefore, fava bean LXYC genotype is suggested as a potential candidate for phytoremediation of Cd/Pb co-contaminated soils coupled with agro-production.


Assuntos
Cádmio/análise , Chumbo/análise , Poluentes do Solo/análise , Vicia faba/genética , Biodegradação Ambiental , Biomassa , China , Genótipo , Raízes de Plantas/química , Raízes de Plantas/genética , Sementes/química , Sementes/genética , Solo/química , Vicia faba/química
14.
J Environ Manage ; 239: 287-298, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913479

RESUMO

Comparative impact of CO2 application and endophyte inoculation was investigated on the growth, rhizosphere characteristics, and cadmium (Cd) absorption of two ecotypes of Sedum alfredii Hance in response to Cd stress under hydroponic or rhizo-box culture conditions. The results showed that both CO2 application and endophyte inoculation significantly (P < 0.05) promoted plant growth (fresh weight and dry weight), improved root morphological properties (SRL, SRA, SRV, ARD and RTN) and exudation (pH, TOC, TN, soluble sugar and organic acids), changed Cd uptake and distribution of both ecotypes of S. alfredii. Meanwhile soil total and DTPA extractable Cd in rhizo-box decreased by biofortification treatments. Superposition biofortification exhibits utmost improvement for the above mentioned parameters, and has potential for enhancing phytoremediation efficiency of hyperaccumulator and sustaining regular growth of non-hyperaccumulator in Cd contaminated soils.


Assuntos
Cádmio/farmacologia , Dióxido de Carbono/metabolismo , Endófitos/metabolismo , Rizosfera , Sedum/metabolismo , Endófitos/efeitos dos fármacos , Hidroponia , Raízes de Plantas/química , Sedum/química , Sedum/efeitos dos fármacos , Solo/química
15.
J Environ Manage ; 243: 144-156, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31100659

RESUMO

Sewage sludge and kitchen refuse are ubiquitously mounting wastes with high organic load, which if reprocessed they could salvage the environment. Reckoned with this certitude, an incubating study was initiated on sequential preincubation of sewage sludge with kitchen waste in 100:0, 70:30, 50:50, and 30:70 ratios for 16 days ensued by vermicomposting of 30 days using Eisenia fetida. Concentration of heavy metals (Cd, Cr, Cu, Mn, Pb, and Zn) in the biosolid mixtures increased during preincubation but reduced progressively through vermicomposting due to bioaccumulation of these metals in the earthworm tissues. Earthworm growth parameters data reflected that sewage sludge and kitchen waste mixture with 70:30 ratio increased the number of cocoons (10.6%), biomass (8.2%), growth rate (8.3%), reproduction rate (12.2%), and decreased their mean mortality rate (80.1%) as compared to that in sole sewage sludge (control). Results of chemical analysis and SEM/EDS imaging, showed that alkalinity, organic carbon, C/N ratio, organic matter and concentration of trace elements (Cd, Cr, Cu, Mn, Pb, and Zn) reduced while macronutrients (N, P, K, Ca and Mg) increased in the final vermicompost as compared to that in initial mixtures. The FT-IR analysis also revealed that various biochemical functional groups underwent biodegradation during combined preincubation-vermicomposting. Bioaccumulation factor (BAF) of all trace elements in the earthworm tissues was higher with 70:30 ratio of substrates, with the trend of Cd > Zn > Cu > Mn > Pb > Cr. Hence, this study concludes that combined preincubation-vermicomposting is the most efficient and ecofriendly technique for biodegradation, stabilization, and conversion of sewage sludge and kitchen waste into organic fertilizer. The nutrient rich vermicompost can be safely used as horticultural substrate and soil conditioner for efficient management of degraded soils. Finally, combined preincubation-vermicomposting is a sustainable system of recycling the sewage sludge along with kitchen waste.


Assuntos
Metais Pesados , Oligoquetos , Animais , Esgotos , Solo , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Toxics ; 12(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39058111

RESUMO

The impact of cadmium (Cd) and fluorine (F) on plant and human health has provoked significant public concern; however, their combined effects on plant and soil bacterial communities have yet to be determined. Here, a pot experiment was conducted to evaluate the effects of exogenous F, Cd, and their combination (FCd) on lettuce growth and soil bacterial communities. The results revealed that F and Cd concentrations in lettuce ranged from 63.69 to 219.45 mg kg-1 and 1.85 to 33.08 mg kg-1, respectively, presenting lower values in shoots than in the roots. Moreover, low contamination levels had no discernable influence on lettuce growth, but showed a synergistic negative on plant biomass when exogenous F and Cd exceeds 300 and 1.0 mg kg-1, respectively. The results of 16S rRNA gene sequencing indicated that the most abundant bacterial community at the phylum level was Proteobacteria, with the relative abundance ranging from 33.42% to 44.10% across all the treatments. The contaminants had little effect on bacterial richness but impacted the structure of bacterial communities. The PCoA showed that compartment and contaminants were the primary contributors to the largest source of community variation, while the VPA indicated that F and Cd synergistically affected the bacterial communities. In turn, lettuce plants could enhance the resistance to the combined stress by increasing the relative abundance of Oxyphotobacteria, Subgroup 6, Thermoleophilia, and TK10 classes in the rhizosphere.

17.
Sci Total Environ ; 931: 172686, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663619

RESUMO

By 2021, rural regions in China were occupied by over 500 million residents, generating an annual volume of 19.5 billion m3 of rural domestic wastewater (RDW). This study aimed to investigate the occurrence and removal of micropollutants (MPs) in RDW treatment facilities and to perform a corresponding wastewater-based epidemiology analysis (WBE). Our findings indicated the significantly high levels of influent MPs, particularly pharmaceuticals, such as ofloxacin and diclofenac being most prevalent (ranging from several to tens of µg/L) across different facilities. After various treatments, regular water indexes in the effluent, like NH3 -N and COD, have basically satisfied the local discharge standard. However, the concentration of certain dominant MPs in effluent remained notably high, ranging from hundreds of ng/L to several µg/L. The risk quotients of MPs like diclofenac, ciprofloxacin, ofloxacin, sulfamethoxazole, diuron, and isoproturon were all above 1 in the effluent, signifying significant hazards to aquatic organisms. The quantitative meta-analysis revealed higher average standardized removal efficiency for membrane bioreactor (MBR) treatment (-11 %) compared to anaerobic/anoxic/aerobic (A2O) treatment (11 %), indicating the higher efficiency of MBR treatment in outperforming the A2O as a secondary treatment. Additionally, employing biofilter as a tertiary treatment proved to be more effective as compared to flocculation-air flotation and artificial wetlands. Moreover, the results of WBE analysis showed that diclofenac and ofloxacin emerged as the most commonly used pharmaceuticals (of seven), with consumption levels recorded at 1222 and 517 mg/(d·103 capita), with daily defined doses per day per 103 capita of 12.2/1000 and 1.29/1000, respectively. This study addresses the existing knowledge gaps regarding the occurrence and removal of MPs in RDW and offers valuable insights into pharmaceutical consumption patterns in rural regions, thereby improving our understanding of public health.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Poluentes Químicos da Água/análise , China , Eliminação de Resíduos Líquidos/métodos , Monitoramento Ambiental
18.
Toxics ; 12(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922062

RESUMO

Current source apportionment models have successfully identified emission sources and quantified their contributions. However, when being utilized for heavy metal source apportion in soil, their accuracy needs to be improved, regarding migration patterns. Therefore, this work intended to improve the pre-existing principal component analysis and multiple linear regression with distance (PCA-MLRD) model to effectively locate pollution pathways (traffic emissions, irrigation water, atmospheric depositions, etc.) and achieve a more precise quantification. The dataset of soil heavy metals was collected from a typical area in the Chang-Zhu-Tan region, Hunan, China in 2021. The identification of the contribution of soil parent material was accomplished through enrichment factors and crustal reference elements. Meanwhile, the anthropogenic emission was identified with principal component analysis and GeoDetector. GeoDetector was used to accurately point to the pollution source from a spatial differentiation perspective. Subsequently, the pollution pathways linked to the identified sources were determined. Non-metal manufacturing factories were found to be significant anthropogenic sources of local soil contamination, mainly through rivers and atmospheric deposition. Furthermore, the influence of irrigation water on heavy metals showed a more pronounced effect within a distance of 1000 m, became weaker after that, and then gradually disappeared. This model may offer improved technical guidance for practical production and the management of soil heavy metal contamination.

19.
Sci Total Environ ; 912: 169105, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38070566

RESUMO

Improving nitrogen use efficiency of chemical fertilizers is essential to mitigate the negative environmental impacts of nitrogen. Nitrification, the conversion of ammonium to nitrate via nitrite by soil microbes, is a prominent source of nitrogen loss in soil systems. The effectiveness of nitrification inhibitors in reducing nitrogen loss through inhibition of nitrification is well-documented, however, their efficacy in heavy metals-contaminated soils needs thorough investigations. The current study assessed the efficacy of nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in reducing nitrous oxide (N2O) emissions in cadmium (Cd) contaminated paddy and red soils under lab-controlled environment. Obtained results indicated the substantial reduction in N2O emissions with DMPP in paddy and red soil by 48 and 35 %, respectively. However, Cd contamination resulted in reduced efficacy of DMPP, thus decreased the N2O emissions by 36 and 25 % in paddy and red soil, respectively. It was found that addition of DMPP had a significant effect on the abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA). Notably, the reduction in N2O emissions by DMPP varied with the abundance of AOB. Moreover, Cd pollution resulted in a significant (P < 0.05) reduction in the abundance of archaeal and bacterial amoA genes, as well as bacterial nirK, nirS, and nosZ genes. The combined treatment of Cd and DMPP had a detrimental impact on denitrifiers, thereby influencing the overall efficiency of DMPP. These findings provide novel insights into the application of DMPP to mitigate nitrification and its potential role in reducing N2O emissions in contaminated soils.


Assuntos
Cádmio , Fosfatos , Cádmio/farmacologia , Iodeto de Dimetilfenilpiperazina/farmacologia , Amônia/farmacologia , Microbiologia do Solo , Archaea , Nitrificação , Solo , Óxido Nitroso/análise , Nitrogênio/farmacologia , Fertilizantes/análise
20.
Sci Total Environ ; 913: 169788, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181951

RESUMO

The phytoremediation efficiency of plants in removing the heavy metals (HMs) might be influenced by their growth status and accumulation capacity of plants. Herein, we conducted a lab-scale experiment and a field try out to assess the optimal plant growth regulators (PGRs) including indole-3-acetic acid (IAA)/brassinolide (BR)/abscisic acid (ABA) in improving the phytoextraction potential of Sedum alfredii Hance (S. alfredii). The results of pot experiment revealed that application of IAA at 0.2 mg/L, BR at 0.4 mg/L, and ABA at 0.2 mg/L demonstrated notable potential as optimal dosage for Cd/Pb/Zn phytoextraction in S. alfredii. The findings of subcellular level of Cd/Pb/Zn in leaves showed that IAA (0.2 mg/L), BR (0.4 mg/L) or ABA (0.2 mg/L) promoted the HMs storage in the soluble and cell wall fraction, therefore contributing HMs subcellular compartmentation. In addition, application of PGRs notably enhanced the antioxidant system (SOD, CAT, POD, APX activities) while reducing lipid peroxidation (MDA content) in S. alfredii, consequently improving HMs tolerance and growth of S. alfredii. Moreover, the results of field trial showed that application of BR, IAA, or ABA+BR substantially improved the growth of S. alfredii by inducing plants biomass and augmenting the levels of photosynthetic pigment contents. Notably, ABA+BR noticed the highest theoretical biomass by 42.9 %, followed by IAA (41.6 %), and BR (36.4 %), as compared with CK. Additionally, ABA+BR treatment showed effectiveness in removing the Cd by 103.4 %, while BR and IAA led to a significant increase of Pb and Zn removal by 239 % and 116 %, respectively, when compared with CK. Overall, the results of this study highlights that the foliar application of IAA, BR, or ABA+BR can serve as viable strategy to boosting phytoremediation efficiency of S. alfredii in contaminated soil by improving the biomass and metal accumulation in harvestable parts.


Assuntos
Metais Pesados , Sedum , Poluentes do Solo , Cádmio/análise , Reguladores de Crescimento de Plantas , Chumbo , Metais Pesados/análise , Ácido Abscísico , Biodegradação Ambiental , Solo , Poluentes do Solo/análise , Raízes de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA