Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nature ; 609(7927): 605-610, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35768502

RESUMO

Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1-3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4-9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline-proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas de Membrana Transportadoras , Antiporters/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Bicarbonatos/metabolismo , Ácidos e Sais Biliares/metabolismo , Sítios de Ligação , Transporte Biológico , Herbicidas/metabolismo , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Ftalimidas/metabolismo , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Prolina/metabolismo , Domínios Proteicos , Multimerização Proteica , Prótons , Sódio/metabolismo , Simportadores/metabolismo
2.
Trends Biochem Sci ; 48(11): 937-948, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37574372

RESUMO

Auxins are pivotal plant hormones that regulate plant growth and transmembrane polar auxin transport (PAT) direct patterns of development. The PIN-FORMED (PIN) family of membrane transporters mediate auxin export from the plant cell and play crucial roles in PAT. Here we describe the recently solved structures of PIN transporters, PIN1, PIN3, and PIN8, and also their mechanisms of substrate recognition and transport of auxin. We compare structures of PINs in both inward- and outward-facing conformations, as well as PINs with different binding configurations for auxin. By this comparative analysis, a model emerges for an elevator transport mechanism. Central structural elements necessary for function are identified, and we show that these are shared with other distantly related protein families.

3.
Plant Cell ; 36(4): 1119-1139, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38092462

RESUMO

Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis (Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and influences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants impact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for controlling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Glutâmico , Cloroplastos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Aminoácidos/metabolismo , Folhas de Planta/metabolismo , Nitrogênio/metabolismo
4.
Plant Cell ; 33(6): 1945-1960, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33751121

RESUMO

Angiosperms have evolved the phloem for the long-distance transport of metabolites. The complex process of phloem development involves genes that only occur in vascular plant lineages. For example, in Arabidopsis thaliana, the BREVIS RADIX (BRX) gene is required for continuous root protophloem differentiation, together with PROTEIN KINASE ASSOCIATED WITH BRX (PAX). BRX and its BRX-LIKE (BRXL) homologs are composed of four highly conserved domains including the signature tandem BRX domains that are separated by variable spacers. Nevertheless, BRX family proteins have functionally diverged. For instance, BRXL2 can only partially replace BRX in the root protophloem. This divergence is reflected in physiologically relevant differences in protein behavior, such as auxin-induced plasma membrane dissociation of BRX, which is not observed for BRXL2. Here we dissected the differential functions of BRX family proteins using a set of amino acid substitutions and domain swaps. Our data suggest that the plasma membrane-associated tandem BRX domains are both necessary and sufficient to convey the biological outputs of BRX function and therefore constitute an important regulatory entity. Moreover, PAX target phosphosites in the linker between the two BRX domains mediate the auxin-induced plasma membrane dissociation. Engineering these sites into BRXL2 renders this modified protein auxin-responsive and thereby increases its biological activity in the root protophloem context.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Feminino , Regulação da Expressão Gênica de Plantas , Família Multigênica , Oócitos/metabolismo , Plantas Geneticamente Modificadas , Domínios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selaginellaceae/química , Xenopus laevis
5.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443187

RESUMO

N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism.


Assuntos
Transporte Biológico Ativo/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ftalimidas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico Ativo/genética , Dimerização , Espectrometria de Massas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oócitos/efeitos dos fármacos , Fosforilação , Ftalimidas/farmacologia , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Xenopus
6.
J Exp Bot ; 74(22): 6893-6903, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279330

RESUMO

Auxin is a crucial plant hormone that controls a multitude of developmental processes. The directional movement of auxin between cells is largely facilitated by canonical PIN-FORMED proteins in the plasma membrane. In contrast, non-canonical PIN-FORMED proteins and PIN-LIKES proteins appear to reside mainly in the endoplasmic reticulum. Despite recent progress in identifying the roles of the endoplasmic reticulum in cellular auxin responses, the transport dynamics of auxin at the endoplasmic reticulum are not well understood. PIN-LIKES are structurally related to PIN-FORMED proteins, and recently published structures of these transporters have provided new insights into PIN-FORMED proteins and PIN-LIKES function. In this review, we summarize current knowledge on PIN-FORMED proteins and PIN-LIKES in intracellular auxin transport. We discuss the physiological properties of the endoplasmic reticulum and the consequences for transport processes across the ER membrane. Finally, we highlight the emerging role of the endoplasmic reticulum in the dynamics of cellular auxin signalling and its impact on plant development.


Assuntos
Proteínas de Arabidopsis , Reguladores de Crescimento de Plantas , Transporte Biológico/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Arabidopsis/metabolismo
7.
New Phytol ; 235(3): 1111-1128, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35491431

RESUMO

De novo shoot organogenesis is a prerequisite for numerous applications in plant research and breeding but is often a limiting factor, for example, in genome editing approaches. Class III homeodomain-leucine zipper (HD-ZIP III) transcription factors have been characterized as crucial regulators of shoot specification, however up-stream components controlling their activity during shoot regeneration are only partially identified. In a chemical genetic screen, we isolated ZIC2, a novel activator of HD-ZIP III activity. Using molecular, physiological and hormone transport analyses in Arabidopsis and sunflower (Helianthus annuus), we examined the molecular mechanism by which the drug promotes HD-ZIP III expression. ZIC2-dependent upregulation of HD-ZIP III transcription promotes shoot regeneration in Arabidopsis and is accompanied by the induction of shoot specifying factors WUS and RAP2.6L and a subset of cytokinin biosynthesis enzymes. ZIC2's effect on HD-ZIP III expression and regeneration is based on its ability to limit polar auxin transport. We further provide evidence that chemical modulation of auxin efflux can enhance de novo shoot formation in the regeneration recalcitrant species sunflower. Activation of HD-ZIP III transcription during shoot regeneration depends on the local distribution of auxin and chemical modulation of auxin transport can be used to overcome poor shoot organogenesis in tissue culture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Melhoramento Vegetal , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 115(26): 6864-6869, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29899148

RESUMO

Asymmetric auxin distribution is instrumental for the differential growth that causes organ bending on tropic stimuli and curvatures during plant development. Local differences in auxin concentrations are achieved mainly by polarized cellular distribution of PIN auxin transporters, but whether other mechanisms involving auxin homeostasis are also relevant for the formation of auxin gradients is not clear. Here we show that auxin methylation is required for asymmetric auxin distribution across the hypocotyl, particularly during its response to gravity. We found that loss-of-function mutants in Arabidopsis IAA CARBOXYL METHYLTRANSFERASE1 (IAMT1) prematurely unfold the apical hook, and that their hypocotyls are impaired in gravitropic reorientation. This defect is linked to an auxin-dependent increase in PIN gene expression, leading to an increased polar auxin transport and lack of asymmetric distribution of PIN3 in the iamt1 mutant. Gravitropic reorientation in the iamt1 mutant could be restored with either endodermis-specific expression of IAMT1 or partial inhibition of polar auxin transport, which also results in normal PIN gene expression levels. We propose that IAA methylation is necessary in gravity-sensing cells to restrict polar auxin transport within the range of auxin levels that allow for differential responses.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Metiltransferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hipocótilo/genética , Metilação , Metiltransferases/genética , Mutação
9.
Proc Natl Acad Sci U S A ; 114(5): E887-E896, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096328

RESUMO

The directional distribution of the phytohormone auxin is essential for plant development. Directional auxin transport is mediated by the polarly distributed PIN-FORMED (PIN) auxin efflux carriers. We have previously shown that efficient PIN1-mediated auxin efflux requires activation through phosphorylation at the four serines S1-S4 in Arabidopsis thaliana The Brefeldin A (BFA)-sensitive D6 PROTEIN KINASE (D6PK) and the BFA-insensitive PINOID (PID) phosphorylate and activate PIN1 through phosphorylation at all four phosphosites. PID, but not D6PK, can also induce PIN1 polarity shifts, seemingly through phosphorylation at S1-S3. The differential effects of D6PK and PID on PIN1 polarity had so far been attributed to their differential phosphosite preference for the four PIN1 phosphosites. We have mapped PIN1 phosphorylation at S1-S4 in situ using phosphosite-specific antibodies. We detected phosphorylation at PIN1 phosphosites at the basal (rootward) as well as the apical (shootward) plasma membrane in different root cell types, in embryos, and shoot apical meristems. Thereby, PIN1 phosphorylation at all phosphosites generally followed the predominant PIN1 distribution but was not restricted to specific polar sides of the cells. PIN1 phosphorylation at the basal and apical plasma membrane was differentially sensitive to BFA treatments, suggesting the involvement of different protein kinases or trafficking mechanisms in PIN1 phosphorylation control. We conclude that phosphosite preferences are not sufficient to explain the differential effects of D6PK and PID on PIN1 polarity, and suggest that a more complex model is needed to explain the effects of PID.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/antagonistas & inibidores , Transporte Biológico , Brefeldina A/farmacologia , Membrana Celular/metabolismo , Polaridade Celular , Meristema/metabolismo , Especificidade de Órgãos , Fosforilação/efeitos dos fármacos , Estruturas Vegetais/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transporte Proteico , Alinhamento de Sequência
10.
Plant Physiol ; 173(1): 788-800, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27872246

RESUMO

The phytohormone auxin is involved in virtually every aspect of plant growth and development. Through polar auxin transport, auxin gradients can be established, which then direct plant differentiation and growth. Shade avoidance responses are well-known processes that require polar auxin transport. In this study, we have identified a mutant, shade avoidance 4 (sav4), defective in shade-induced hypocotyl elongation and basipetal auxin transport. SAV4 encodes an unknown protein with armadillo repeat- and tetratricopeptide repeat-like domains known to provide protein-protein interaction surfaces. C terminally yellow fluorescent protein-tagged SAV4 localizes to both the plasma membrane and the nucleus. Membrane-localized SAV4 displays a polar association with the shootward plasma membrane domain in hypocotyl and root cells, which appears to be necessary for its function in hypocotyl elongation. Cotransfection of SAV4 and ATP-binding cassette B1 (ABCB1) auxin transporter in tobacco (Nicotiana benthamiana) revealed that SAV4 blocks ABCB1-mediated auxin efflux. We thus propose that polarly localized SAV4 acts to inhibit ABCB-mediated auxin efflux toward shoots and facilitates the establishment of proper auxin gradients.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Ácidos Indolacéticos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Mutação , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismo
11.
Development ; 141(21): 4139-48, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25256344

RESUMO

Tissue morphogenesis in plants requires communication between cells, a process involving the trafficking of molecules through plasmodesmata (PD). PD conductivity is regulated by endogenous and exogenous signals. However, the underlying signaling mechanisms remain enigmatic. In Arabidopsis, signal transduction mediated by the receptor-like kinase STRUBBELIG (SUB) contributes to inter-cell layer signaling during tissue morphogenesis. Previous analysis has revealed that SUB acts non-cell-autonomously suggesting that SUB controls tissue morphogenesis by participating in the formation or propagation of a downstream mobile signal. A genetic screen identified QUIRKY (QKY), encoding a predicted membrane-anchored C2-domain protein, as a component of SUB signaling. Here, we provide further insight into the role of QKY in this process. We show that like SUB, QKY exhibits non-cell-autonomy when expressed in a tissue-specific manner and that non-autonomy of QKY extends across several cells. In addition, we report on localization studies indicating that QKY and SUB localize to PD but independently of each other. FRET-FLIM analysis suggests that SUB and QKY are in close contact at PD in vivo. We propose a model where SUB and QKY interact at PD to promote tissue morphogenesis, thereby linking RLK-dependent signal transduction and intercellular communication mediated by PD.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plasmodesmos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Plasmodesmos/genética , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/fisiologia
12.
Plant Cell Environ ; 39(7): 1393-5, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26574181

RESUMO

This article comments on: Evolutionarily distant pathogens require the Arabidopsis phytosulfokine signalling pathway to establish disease.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Plantas , Transdução de Sinais
13.
Plant Physiol ; 163(1): 135-49, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23903439

RESUMO

NEDD8 (NEURAL PRECURSOR CELL-EXPRESSED, DEVELOPMENTALLY DOWN-REGULATED PROTEIN8) is an evolutionarily conserved 8-kD protein that is closely related to ubiquitin and that can be conjugated like ubiquitin to specific lysine residues of target proteins in eukaryotes. In contrast to ubiquitin, for which a broad range of substrate proteins are known, only a very limited number of NEDD8 target proteins have been identified to date. Best understood, and also evolutionarily conserved, is the NEDD8 modification (neddylation) of cullins, core subunits of the cullin-RING-type E3 ubiquitin ligases that promote the polyubiquitylation of degradation targets in eukaryotes. Here, we show that Myeloid differentiation factor-2-related lipid-recognition domain protein ML3 is an NEDD8- as well as ubiquitin-modified protein in Arabidopsis (Arabidopsis thaliana) and examine the functional role of ML3 in the plant cell. Our analysis indicates that ML3 resides in the vacuole as well as in endoplasmic reticulum (ER) bodies. ER bodies are Brassicales-specific ER-derived organelles and, similar to other ER body proteins, ML3 orthologs can only be identified in this order of flowering plants. ML3 gene expression is promoted by wounding as well as by the phytohormone jasmonic acid and repressed by ethylene, signals that are known to induce and repress ER body formation, respectively. Furthermore, ML3 protein abundance is dependent on NAI1, a master regulator of ER body formation in Arabidopsis. The regulation of ML3 expression and the localization of ML3 in ER bodies and the vacuole is in agreement with a demonstrated importance of ML3 in the defense to herbivore attack. Here, we extend the spectrum of ML3 biological functions by demonstrating a role in the response to microbial pathogens.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Ubiquitinas/fisiologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismo , Vacúolos/metabolismo
14.
J Exp Bot ; 65(7): 1789-98, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24336493

RESUMO

Plants are constantly challenged by pathogens and pests, which can have a profound impact on the yield and quality of produce in agricultural systems. The vascular system of higher plants is critical for growth and for their ability to counteract changing external conditions, serving as a distribution network for water, nutrients, and photosynthates from the source organs to regions where they are in demand. Unfortunately, these features also make it an attractive target for pathogens and pests that demand access to a reliable supply of host resources. The vascular tissue of plants therefore often plays a central role in pathogen and parasite interactions. One of the more striking rearrangements of the host vascular system occurs during root-knot nematode infestation of plant roots. These sedentary endoparasites induce permanent feeding sites that are comprised of 'giant cells' and are subject to extensive changes in vascularization, resulting in the giant cells being encaged within a network of de novo formed xylem and phloem cells. Despite being considered critical to the function of the feeding site, the mechanisms underlying this vascularization have received surprisingly little attention when compared with the amount of research on giant cell development and function. An overview of the current knowledge on vascularization of root-knot nematode feeding sites is provided here and recent advances in our understanding of the transport mechanisms involved in nutrient delivery to these parasite-induced sinks are described.


Assuntos
Desenvolvimento Vegetal , Doenças das Plantas/parasitologia , Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Transporte Biológico , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/parasitologia
15.
Annu Rev Plant Biol ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38211951

RESUMO

Auxins, a group of central hormones in plant growth and development, are transported by a diverse range of transporters with distinct biochemical and structural properties. This review summarizes the current knowledge on all known auxin transporters with respect to their biochemical and biophysical properties and the methods used to characterize them. In particular, we focus on the recent advances that were made concerning the PIN-FORMED family of auxin exporters. Insights derived from solving their structures have improved our understanding of the auxin export process, and we discuss the current state of the art on PIN-mediated auxin transport, including the use of biophysical methods to examine their properties. Understanding the mechanisms of auxin transport is crucial for understanding plant growth and development, as well as for the development of more effective strategies for crop production and plant biotechnology. Expected final online publication date for the Annual Review of Plant Biology, Volume 75 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

16.
Nat Biotechnol ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267759

RESUMO

Clonal propagation of plants by induction of adventitious roots (ARs) from stem cuttings is a requisite step in breeding programs. A major barrier exists for propagating valuable plants that naturally have low capacity to form ARs. Due to the central role of auxin in organogenesis, indole-3-butyric acid is often used as part of commercial rooting mixtures, yet many recalcitrant plants do not form ARs in response to this treatment. Here we describe the synthesis and screening of a focused library of synthetic auxin conjugates in Eucalyptus grandis cuttings and identify 4-chlorophenoxyacetic acid-L-tryptophan-OMe as a competent enhancer of adventitious rooting in a number of recalcitrant woody plants, including apple and argan. Comprehensive metabolic and functional analyses reveal that this activity is engendered by prolonged auxin signaling due to initial fast uptake and slow release and clearance of the free auxin 4-chlorophenoxyacetic acid. This work highlights the utility of a slow-release strategy for bioactive compounds for more effective plant growth regulation.

17.
Plant J ; 71(1): 173-81, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22268772

RESUMO

The past decade has seen a tremendous increase in RNA research, which has demonstrated that RNAs are involved in many more processes than were previously thought. The dynamics of RNA synthesis towards their regulated activity requires the interplay of RNAs with numerous RNA binding proteins (RBPs). The localization of RNA, a mechanism for controlling translation in a spatial and temporal fashion, requires processing and assembly of RNA into transport granules in the nucleus, transport towards cytoplasmic destinations and regulation of its activity. Compared with animal model systems little is known about RNA dynamics and motility in plants. Commonly used methods to study RNA transport and localization are time-consuming, and require expensive equipment and a high level of experimental skill. Here, we introduce the λN22 RNA stem-loop binding system for the in vivo visualization of RNA in plant cells. The λN22 system consists of two components: the λN22 RNA binding peptide and the corresponding box-B stem loops. We generated fusions of λN22 to different fluorophores and a GATEWAY vector series for the simple fusion of any target RNA 5' or 3' to box-B stem loops. We show that the λN22 system can be used to detect RNAs in transient expression assays, and that it offers advantages compared with the previously described MS2 system. Furthermore, the λN22 system can be used in combination with the MS2 system to visualize different RNAs simultaneously in the same cell. The toolbox of vectors generated for both systems is easy to use and promises significant progress in our understanding of RNA transport and localization in plant cells.


Assuntos
Vetores Genéticos , Células Vegetais/metabolismo , Transporte de RNA , RNA de Plantas/análise , Corantes Fluorescentes , Proteínas Recombinantes de Fusão , Nicotiana/genética , Nicotiana/metabolismo
18.
Plant Physiol ; 158(4): 1643-55, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22312005

RESUMO

Many membrane proteins are involved in the transport of nutrients in plants. While the import of amino acids into plant cells is, in principle, well understood, their export has been insufficiently described. Here, we present the identification and characterization of the membrane protein Siliques Are Red1 (SIAR1) from Arabidopsis (Arabidopsis thaliana) that is able to translocate amino acids bidirectionally into as well as out of the cell. Analyses in yeast and oocytes suggest a SIAR1-mediated export of amino acids. In Arabidopsis, SIAR1 localizes to the plasma membrane and is expressed in the vascular tissue, in the pericycle, in stamen, and in the chalazal seed coat of ovules and developing seeds. Mutant alleles of SIAR1 accumulate anthocyanins as a symptom of reduced amino acid content in the early stages of silique development. Our data demonstrate that the SIAR1-mediated export of amino acids plays an important role in organic nitrogen allocation and particularly in amino acid homeostasis in developing siliques.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostase , Sementes/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/genética , Animais , Transporte Biológico , Membrana Celular/metabolismo , Teste de Complementação Genética , Proteínas de Fluorescência Verde/metabolismo , Família Multigênica , Mutação/genética , Oócitos/metabolismo , Especificidade de Órgãos , Oryza , Fenótipo , Filogenia , Feixe Vascular de Plantas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/metabolismo , Xenopus laevis
19.
Nat Commun ; 14(1): 3379, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291153

RESUMO

In plant communities, diversity often increases productivity and functioning, but the specific underlying drivers are difficult to identify. Most ecological theories attribute positive diversity effects to complementary niches occupied by different species or genotypes. However, the specific nature of niche complementarity often remains unclear, including how it is expressed in terms of trait differences between plants. Here, we use a gene-centred approach to study positive diversity effects in mixtures of natural Arabidopsis thaliana genotypes. Using two orthogonal genetic mapping approaches, we find that between-plant allelic differences at the AtSUC8 locus are strongly associated with mixture overyielding. AtSUC8 encodes a proton-sucrose symporter and is expressed in root tissues. Genetic variation in AtSUC8 affects the biochemical activities of protein variants and natural variation at this locus is associated with different sensitivities of root growth to changes in substrate pH. We thus speculate that - in the particular case studied here - evolutionary divergence along an edaphic gradient resulted in the niche complementarity between genotypes that now drives overyielding in mixtures. Identifying genes important for ecosystem functioning may ultimately allow linking ecological processes to evolutionary drivers, help identify traits underlying positive diversity effects, and facilitate the development of high-performance crop variety mixtures.


Assuntos
Biodiversidade , Ecossistema , Plantas , Genótipo , Fenótipo
20.
Artigo em Inglês | MEDLINE | ID: mdl-34127449

RESUMO

From embryogenesis to fruit formation, almost every aspect of plant development and differentiation is controlled by the cellular accumulation or depletion of auxin from cells and tissues. The respective auxin maxima and minima are generated by cell-to-cell auxin transport via transporter proteins. Differential auxin accumulation as a result of such transport processes dynamically regulates auxin distribution during differentiation. In this review, we introduce all auxin transporter (families) identified to date and discuss the knowledge on prominent family members, namely, the PIN-FORMED exporters, ATP-binding cassette B (ABCB)-type transporters, and AUX1/LAX importers. We then concentrate on the biochemical features of these transporters and their regulation by posttranslational modifications and interactors.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Transporte Biológico , Humanos , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA