Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Occup Environ Hyg ; 18(9): 461-475, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197274

RESUMO

Environmental air sampling of the SARS-CoV-2 virus in occupational and community settings is pertinent to reduce and monitor the spread of the COVID pandemic. However, there is a general lack of standardized procedures for airborne virus sampling and limited knowledge of how sampling and storage stress impact the recovery of captured airborne viruses. Since filtration is one of the commonly used methods to capture airborne viruses, this study analyzed the effect of sampling and storage stress on SARS-CoV-2 surrogate virus (human coronavirus OC43, or HCoV-OC43) captured by filters. HCoV-OC43, a simulant of the SARS-CoV-2, was aerosolized and captured by PTFE-laminated filters. The impact of sampling stress was evaluated by comparing the RNA yields recovered when sampled at 3 L/min and 10 L/min and for 10 min and 60 min; in one set of experiments, additional stress was added by passing clean air through filters with the virus for 1, 5, and 15 hr. The impact of storage stress was designed to examine RNA recovery from filters at room temperature (25 °C) and refrigerated conditions (4 °C) for up to 1 week of storage. To our knowledge, this is the first report on using HCoV-OC43 aerosol in air sampling experiments, and the mode diameter of the virus aerosolized from the growth medium was 40-60 nm as determined by SMPS + CPC system (TSI Inc.) and MiniWRAS (Grimm Inc.) measurements. No significant difference was found in virus recovery between the two sampling flow rates and different sampling times (p > 0.05). However, storage at room temperature (25 °C) yielded ∼2x less RNA than immediate processing and storage at refrigerated conditions (4 °C). Therefore, it is recommended to store filter samples with viruses at 4 °C up to 1 week if the immediate analysis is not feasible. Although the laminated PTFE filter used in this work purposefully does not include a non-PTFE backing, the general recommendations for handling and storing filter samples with viral particles are likely to apply to other filter types.


Assuntos
Filtros de Ar/virologia , COVID-19/epidemiologia , Coronavirus Humano OC43/isolamento & purificação , Manejo de Espécimes/métodos , Manejo de Espécimes/normas , Monitoramento Ambiental , Humanos , Pandemias , SARS-CoV-2 , Temperatura , Fatores de Tempo
2.
Aerosol Sci Technol ; 56(12): 1132-1145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37168518

RESUMO

This article introduces REAS (Rutgers Electrostatic Active Sampler), a new active bioaerosol sampler using permanently polarized ferroelectric film (e.g., PVDF) to capture charge-carrying bioaerosol particles. While REAS operates on an electrostatic collection principle, due to its unique materials and design, it does not require external power to charge incoming particles or to create an electrostatic collection field. The sampler consists of a polarized film wound in a spiral configuration with oppositely polarized film sides positioned 2.25 mm apart. The film and its holder are inserted into a 3D-printed housing cylinder to connect to a pump. The device has an open channel design, creating virtually no pressure drop, which allows for longer sampling times on the same battery charge compared to filter samplers. When REAS was tested in different field environments, the physical collection efficiency ranged from 19 ± 2% in a laboratory environment at 1 L/min to 41 ± 0.1% in residence at 0.1 L/min. When REAS was used to capture culturable bacteria and fungi over a 24-hr period, the concentrations determined by REAS were not different from those determined by an Institute of Medicine sampler (IOM, SKC, Inc.). The concentrations determined by both samplers were lower than those measured by a SAS Super 180 Sampler (SAS, Bioscience International), except for outdoor fungi. However, the SAS was used as a grab sampler to avoid overloading or desiccating the plates, while both REAS and IOM continuously sampled for 24 hrs. Further studies will explore improvements to the REAS sample elution protocols.

3.
J Expo Sci Environ Epidemiol ; 31(6): 1032-1046, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208837

RESUMO

BACKGROUND: Cosmetic powders contain numerous components, including titanium dioxide (TiO2), which is classified as possibly carcinogenic to humans (Group 2B). However, little is known about potential inhalation exposures to particles that are released during cosmetic powder applications. METHODS: We realistically simulated the application of five different eyebrow powders using a mannequin and then determined concentrations of total suspended particles (TSP), PM10, and PM4 fractions of particles that would be inhaled during powder application. We determined the size and shape of particles in the original powders and released particles, as well as their TiO2 concentrations and Ti content of individual particles. RESULTS: The application of eyebrow powders resulted in the release and inhalation of airborne particles at concentrations ranging from 21.2 to 277.3 µg/m3, depending on the particle fraction and the powder. The concentrations of TiO2 in PM4 and PM10 samples reached 2.7 µg/m3 and 9.3 µg/m3, respectively. The concentration of TiO2 in airborne particle fractions was proportional to the presence of TiO2 in the bulk powder. CONCLUSION: The application of eyebrow powders results in user exposures to respirable PM4 and PM10 particles, including those containing TiO2. This information should be of interest to stakeholders concerned about inhalation exposure to TiO2.


Assuntos
Sobrancelhas , Titânio , Humanos , Exposição por Inalação/análise , Tamanho da Partícula , Pós
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA