Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 21(6): 2751-2766, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38693707

RESUMO

Innate defense regulator-1002 (IDR-1002) is a synthetic peptide with promising immunomodulatory and antibiofilm properties. An appreciable body of work exists around its mechanism of action at the cellular and molecular level, along with its efficacy across several infection and inflammation models. However, little is known about its absorption, distribution, and excretion in live organisms. Here, we performed a comprehensive biodistribution assessment with a gallium-67 radiolabeled derivative of IDR-1002 using nuclear tracing techniques. Various dose levels of the radiotracer (2-40 mg/kg) were administered into the blood, peritoneal cavity, and subcutaneous tissue, or instilled into the lungs. The peptide was well tolerated at all subcutaneous and intraperitoneal doses, although higher levels were associated with delayed absorption kinetics and precipitation of the peptide within the tissues. Low intratracheal doses were rapidly absorbed systemically, and small increases in the dose level were lethal. Intravenous doses were rapidly cleared from the blood at lower levels, and upon escalation, were toxic with a high proportion of the dose accumulating within the lung tissue. To improve biocompatibility and prolong its circulation within the blood, IDR-1002 was further formulated onto high molecular weight hyperbranched polyglycerol (HPG) polymers. Constructs prepared at 5:1 and 10:1 peptide-to-polymer ratios were colloidally stable, maintained the biological profile of the peptide payload and helped reduce red blood cell lysis. The 5:1 construct circulated well in the blood, but higher peptide loading was associated with rapid clearance by the reticuloendothelial system. Many peptides face pharmacokinetic and biocompatibility challenges, but formulations such as those with HPG have the potential to overcome these limitations.


Assuntos
Radioisótopos de Gálio , Animais , Distribuição Tecidual , Camundongos , Radioisótopos de Gálio/farmacocinética , Radioisótopos de Gálio/química , Radioisótopos de Gálio/administração & dosagem , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacocinética , Feminino , Nanopartículas/química , Camundongos Endogâmicos C57BL , Masculino , Imunidade Inata/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/química
2.
Biochim Biophys Acta ; 1858(12): 3195-3204, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693190

RESUMO

Anti-cancer peptides (ACPs) are small cationic and hydrophobic peptides that are more toxic to cancer cells than normal cells. ACPs kill cancer cells by causing irreparable membrane damage and cell lysis, or by inducing apoptosis. Direct-acting ACPs do not bind to a unique receptor, but are rather attracted to several different molecules on the surface of cancer cells. Here we report that an amidated wasp venom peptide, Mastoparan, exhibited potent anti-cancer activities toward leukemia (IC50~8-9.2µM), myeloma (IC50~11µM), and breast cancer cells (IC50~20-24µM), including multidrug resistant and slow growing cancer cells. Importantly, the potency and mechanism of cancer cell killing was related to the amidation of the C-terminal carboxyl group. Mastoparan was less toxic to normal cells than it was to cancer cells (e.g., IC50 to PBMC=48µM). Mastoparan killed cancer cells by a lytic mechanism. Moreover, Mastoparan enhanced etoposide-induced cell death in vitro. Our data also suggest that Mastoparan and gemcitabine work synergistically in a mouse model of mammary carcinoma. Collectively, these data demonstrate that Mastoparan is a broad-spectrum, direct-acting ACP that warrants additional study as a new therapeutic agent for the treatment of various cancers.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Neoplasias Mamárias Experimentais/tratamento farmacológico , Peptídeos/farmacologia , Venenos de Vespas/farmacologia , Animais , Linhagem Celular Tumoral , Dicroísmo Circular , Desoxicitidina/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Gencitabina
3.
Biochem Cell Biol ; 95(1): 91-98, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28165293

RESUMO

Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Lactoferrina/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Bovinos , Feminino , Hemólise/efeitos dos fármacos , Humanos , Células Jurkat , Células Tumorais Cultivadas
4.
PLoS Pathog ; 10(5): e1004152, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24852171

RESUMO

Bacteria form multicellular communities known as biofilms that cause two thirds of all infections and demonstrate a 10 to 1000 fold increase in adaptive resistance to conventional antibiotics. Currently, there are no approved drugs that specifically target bacterial biofilms. Here we identified a potent anti-biofilm peptide 1018 that worked by blocking (p)ppGpp, an important signal in biofilm development. At concentrations that did not affect planktonic growth, peptide treatment completely prevented biofilm formation and led to the eradication of mature biofilms in representative strains of both Gram-negative and Gram-positive bacterial pathogens including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, methicillin resistant Staphylococcus aureus, Salmonella Typhimurium and Burkholderia cenocepacia. Low levels of the peptide led to biofilm dispersal, while higher doses triggered biofilm cell death. We hypothesized that the peptide acted to inhibit a common stress response in target species, and that the stringent response, mediating (p)ppGpp synthesis through the enzymes RelA and SpoT, was targeted. Consistent with this, increasing (p)ppGpp synthesis by addition of serine hydroxamate or over-expression of relA led to reduced susceptibility to the peptide. Furthermore, relA and spoT mutations blocking production of (p)ppGpp replicated the effects of the peptide, leading to a reduction of biofilm formation in the four tested target species. Also, eliminating (p)ppGpp expression after two days of biofilm growth by removal of arabinose from a strain expressing relA behind an arabinose-inducible promoter, reciprocated the effect of peptide added at the same time, leading to loss of biofilm. NMR and chromatography studies showed that the peptide acted on cells to cause degradation of (p)ppGpp within 30 minutes, and in vitro directly interacted with ppGpp. We thus propose that 1018 targets (p)ppGpp and marks it for degradation in cells. Targeting (p)ppGpp represents a new approach against biofilm-related drug resistance.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/química , Biofilmes/crescimento & desenvolvimento , Burkholderia cenocepacia/efeitos dos fármacos , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Teste de Complementação Genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/crescimento & desenvolvimento , Ligases/genética , Ligases/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento
5.
Exp Mol Pathol ; 99(3): 426-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26344617

RESUMO

Cationic antimicrobial peptides (CAPs) defend against pathogens and, in some cases, exhibit potent anticancer activities. We previously reported that the pleurocidin NRC-03 causes lysis of breast cancer and multiple myeloma cells. NRC-03 also reduces the EC50 of other cytotoxic compounds and prevents tumor growth in vivo. However, the therapeutic utility of NRC-03 may be limited by its susceptibility to degradation by proteases. The goal of this study was to characterize the anticancer activities of a d-amino acid analog of NRC-03 ([D]-NRC-03) that was predicted to be resistant to proteolytic degradation. Unlike NRC-03, [D]-NRC-03 was not degraded by human serum or trypsin and, in comparison to NRC-03, showed increased killing of breast cancer cells, including multidrug-resistant cells; however, [D]-NRC-03 was somewhat more cytotoxic than NRC-03 for several types of normal cells. Importantly, [D]-NRC-03 was more effective than NRC-03 in vivo since 4-fold less peptide was required for an equivalent inhibitory effect on the growth of breast cancer cell xenografts in immune-deficient mice. These findings demonstrate that a d-amino acid analog of NRC-03 overcomes a major limitation to the therapeutic use of NRC-03, namely peptide stability. Further modification of [D]-NRC-03 is required to improve its selectivity for cancer cells.


Assuntos
Aminoácidos/farmacologia , Neoplasias da Mama/patologia , Proteínas de Peixes/farmacologia , Aminoácidos/química , Animais , Morte Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Proteínas de Peixes/química , Linguado , Humanos , Camundongos SCID
6.
Biochim Biophys Acta ; 1828(8): 1802-13, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23562406

RESUMO

A tryptophan (Trp)-rich region in the wheat endosperm protein, puroindoline A, was previously shown to possess potent antimicrobial activity against Gram-positive and Gram-negative bacteria and this was attributed to the peptide inducing membrane instability. In the present work, the antimicrobial activity of the corresponding Trp-rich region in the puroindoline B isoform was examined and its antimicrobial activity was characterized. Unexpectedly, the puroindoline B Trp-rich peptide (PuroB) was relatively inactive compared to the related puroindoline A peptide (PuroA), despite strong sequence similarity. Using the sequence of PuroA as a template, a series of PuroB variants were synthesized and the antimicrobial activity was restored. Interestingly, all of these PuroB peptides preferentially interacted with negatively charged phospholipids, but unlike PuroA, they did not disrupt the integrity of lipid bilayers. This suggests that the primary mode of action of the PuroB peptides involves an antimicrobial target other than the bacterial membrane. Further tests revealed that all of the puroindoline derived peptides bind deoxyribonucleic acid (DNA) and block macromolecular synthesis in vivo. Based on these results, it appears that the interaction between puroindoline derived peptides and membranes is only an initial step in the mode of action and that binding to intracellular targets, such as DNA and ribonucleic acid (RNA), contributes significantly to their antimicrobial mode of action.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Plantas/química , Staphylococcus aureus/efeitos dos fármacos , Triptofano/metabolismo , Peptídeos Catiônicos Antimicrobianos/síntese química , Varredura Diferencial de Calorimetria , Membrana Celular/metabolismo , Dicroísmo Circular , DNA/metabolismo , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Fosfolipídeos/metabolismo , RNA/metabolismo , Espectrometria de Fluorescência
7.
Biometals ; 27(5): 935-48, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24916114

RESUMO

Lactoferrin (LF) is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. The antimicrobial activity of LF has been related to the presence of an antimicrobial peptide sequence, called lactoferricin (LFcin), located in the N-terminal region of the protein. The antimicrobial activity of bovine LFcin is considerably stronger than the human version. In this work, chimera peptides combining segments of bovine and human LFcin were generated in order to study their antimicrobial activity and mechanism of action. In addition, the relevance of the conserved disulfide bridge and the resulting cyclic structure of both LFcins were analyzed by using "click chemistry" and sortase A-catalyzed cyclization of the peptides. The N-terminal region of bovine LFcin (residues 17-25 of bovine LF) proved to be very important for the antimicrobial activity of the chimera peptides against E. coli, when combined with the C-terminal region of human LFcin. Similarly the cyclic bovine LFcin analogs generated by "click chemistry" and sortase A preserved the antimicrobial activity of the original peptide, showing the significance of these two techniques in the design of cyclic antimicrobial peptides. The mechanism of action of bovine LFcin and its active derived peptides was strongly correlated with membrane leakage in E. coli and up to some extent with the ability to induce vesicle aggregation. This mechanism was also preserved under conditions of high ionic strength (150 mM NaCl) illustrating the importance of these peptides in a more physiologically relevant system.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Lactoferrina/química , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bovinos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Química Click , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli/fisiologia , Humanos , Lactoferrina/genética , Lactoferrina/farmacologia , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Especificidade da Espécie , Lipossomas Unilamelares/química
8.
Biochim Biophys Acta ; 1818(3): 762-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155682

RESUMO

Lactoferricin and lactoferrampin are two antimicrobial peptides found in the N-terminal lobe of bovine lactoferrin with broad spectrum antimicrobial activity against a range of Gram-positive and Gram-negative bacteria as well as Candida albicans. A heterodimer comprised of lactoferrampin joined to a fragment of lactoferricin was recently reported in which these two peptides were joined at their C-termini through the two amino groups of a single Lys residue (Bolscher et al., 2009, Biochimie 91(1):123-132). This hybrid peptide, termed LFchimera, has significantly higher antimicrobial activity compared to the individual peptides or an equimolar mixture of the two. In this work, the underlying mechanism behind the increased antibacterial activity of LFchimera was investigated. Differential scanning calorimetry studies demonstrated that all the peptides influenced the thermotropic phase behaviour of anionic phospholipid suspensions. Calcein leakage and vesicle fusion experiments with anionic liposomes revealed that LFchimera had enhanced membrane perturbing properties compared to the individual peptides. Peptide structures were evaluated using circular dichroism and NMR spectroscopy to gain insight into the structural features of LFchimera that contribute to the increased antimicrobial activity. The NMR solution structure, determined in a miscible co-solvent mixture of chloroform, methanol and water, revealed that the Lys linkage increased the helical content in LFchimera compared to the individual peptides, but it did not fix the relative orientations of lactoferricin and lactoferrampin with respect to each other. The structure of LFchimera provides insight into the conformation of this peptide in a membranous environment and improves our understanding of its antimicrobial mechanism of action.


Assuntos
Antibacterianos/química , Lactoferrina/química , Lipossomos/química , Fragmentos de Peptídeos/química , Fosfolipídeos/química , Proteínas Recombinantes de Fusão/química , Animais , Varredura Diferencial de Calorimetria , Bovinos , Dicroísmo Circular , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
9.
Biopolymers ; 100(6): 572-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23553602

RESUMO

The increasing threat of antibiotic resistance in pathogenic bacteria and the dwindling supply of antibiotics available to combat these infections poses a significant threat to human health throughout the world. Antimicrobial peptides (AMPs) have long been touted as the next generation of antibiotics capable of filling the anti-infective void. Unfortunately, peptide-based antibiotics have yet to realize their potential as novel pharmaceuticals, in spite of the immense number of known AMP sequences and our improved understanding of their antibacterial mechanism of action. Recently, the immunomodulatory properties of certain AMPs have become appreciated. The ability of small synthetic peptides to protect against infection in vivo has demonstrated that modulation of the innate immune response is an effective strategy to further develop peptides as novel anti-infectives. This review focuses on the screening methods that have been used to assess novel peptide sequences for their antibacterial and immunomodulatory properties. It will also examine how we have progressed in our ability to identify and optimize peptides with desired biological characteristics and enhanced therapeutic potential. In addition, the current challenges to the development of peptides as anti-infectives are examined and the strategies being used to overcome these issues are discussed.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Bactérias/efeitos dos fármacos , Humanos , Imunidade Inata
10.
J Dent ; 134: 104552, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201774

RESUMO

OBJECTIVE: To evaluate the dynamics of killing of oral multispecies biofilms grown on dental restorative materials by commercially available mouthrinses and a d-enantiomeric peptide. METHODS: Four composite resins (3 M Supreme, 3 M Supreme flow, Kerr Sonicfill, and Shofu Beautifil II) and one glass ionomer (GC Fuji II) were used as restorative materials. Plaque biofilms were grown on the surfaces of restorative material discs for 1 week. The surface roughness and biofilm attachment were assessed by atomic force microscopy and scanning electron microscopy. One-week-old biofilms grown anaerobically at 37 °C were exposed to each of five solutions for one minute (twice daily for seven days): Listerine Total care and Paroex Gum mouthrinses, 0.12% chlorhexidine, 0.001% d-enantiomeric peptide DJK-5, and sterile water. The dynamic variation of the biovolume of the biofilms and the percentage of dead bacteria were monitored and analyzed using confocal laser scanning microscopy. RESULTS: All restorative materials had similar surface roughness with intact biofilm attachment. The percentage of dead bacteria and biovolume of biofilms treated by each oral rinse solution remained constant between days 1 and 7, with no statistically significant difference. DJK-5 showed the highest percentage of dead bacteria (up to 75.7%; cf. ∼20-40% for other mouthrinses) of all solutions tested within 7 days. CONCLUSIONS: DJK-5 outperformed conventional mouthrinses in killing bacteria in oral multispecies biofilms grown on dental restorative materials. CLINICAL SIGNIFICANCE: The antimicrobial peptide DJK-5 is effective against oral biofilms and serves as a promising candidate for the development of future mouthrinses to improve long-term oral hygiene.


Assuntos
Clorexidina , Placa Dentária , Humanos , Clorexidina/farmacologia , Peptídeos , Antissépticos Bucais/farmacologia , Bactérias , Biofilmes
11.
J Dent ; 139: 104777, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37944630

RESUMO

OBJECTIVE: To investigate the effectiveness of a d-enantiomeric antibiofilm peptide (DJK-5) on the anticorrosion ability of titanium (Ti) with different surface roughness against Streptococcus mutans biofilms. METHODS: Commercially pure Ti disks with machined (MA, smooth) or sandblasted + acid-etched (SLA, rough) surfaces were prepared and characterized. All disks were divided into three groups: a positive control (PC) group with S. mutans, a DJK-5-treated group, and a negative control (NC) group without S. mutans. Biofilm formation and corrosion on Ti surfaces were determined by confocal laser scanning microscopy and scanning electron microscopy after 2 and 6 days, and the electrochemical properties were evaluated. RESULTS: Ten µg/mL of DJK-5 killed 83.3 % and 87.4 % of biofilms on SLA and MA Ti surfaces, respectively after 2 days, and 72.9 % and 77.7 % after 6 days, with more bacteria surviving on SLA surfaces with higher roughness (p < 0.05). DJK-5 treatment induced less surface defects with tiny pit corrosion than PC. DJK-5 treatment when compared to PC, led to electrochemical properties more reflecting NC surfaces, including significantly less negative corrosion potential, lower corrosion current, and higher passive film resistance (p < 0.05). SLA surfaces exhibited higher current density and lower resistance than MA surfaces (p < 0.05). CONCLUSION: DJK-5 effectively enhanced the corrosion resistance of Ti with different surface roughness while killing S. mutans biofilms, and smooth surfaces were more susceptible to peptide treatment. CLINICAL SIGNIFICANCE: The antibiofilm peptide is promising for promoting the anticorrosion ability of Ti against biofilms, thereby preventing biofilm-related infections.


Assuntos
Streptococcus mutans , Titânio , Titânio/farmacologia , Titânio/química , Biofilmes , Peptídeos , Microscopia Eletrônica de Varredura , Propriedades de Superfície
12.
Front Bioeng Biotechnol ; 11: 1339912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274010

RESUMO

Titanium alloys have gained popularity in implant dentistry for the restoration of missing teeth and related hard tissues because of their biocompatibility and enhanced strength. However, titanium corrosion and infection caused by microbial biofilms remains a significant clinical challenge leading to implant failure. This study aimed to evaluate the effectiveness of antibiofilm peptides 1018 and DJK-5 on the corrosion resistance of titanium in the presence of Streptococcus mutans. Commercially pure titanium disks were prepared and used to form biofilms. The disks were randomly assigned to different treatment groups (exposed to S. mutans supplied with sucrose) including a positive control with untreated biofilms, peptides 1018 or DJK-5 at concentrations of 5 µg/mL or 10 µg/mL, and a negative control with no S. mutans. Dynamic biofilm growth and pH variation of all disks were measured after one or two treatment periods of 48 h. After incubation, the dead bacterial proportion, surface morphology, and electrochemical behaviors of the disks were determined. The results showed that peptides 1018 and DJK-5 exhibited significantly higher dead bacterial proportions than the positive control group in a concentration dependent manner (p < 0.01), as well as far less defects in microstructure. DJK-5 at 10 µg/mL killed 84.82% of biofilms and inhibited biofilm growth, preventing acidification due to S. mutans and maintaining a neutral pH. Potential polarization and electrochemical impedance spectroscopy data revealed that both peptides significantly reduced the corrosion and passive currents on titanium compared to titanium surfaces with untreated biofilms, and increased the resistance of the passive film (p < 0.05), with 10 µg/mL of DJK-5 achieving the greatest effect. These findings demonstrated that antibiofilm peptides are effective in promoting corrosion resistance of titanium against S. mutans, suggesting a promising strategy to enhance the stability of dental implants by endowing them with antibiofilm and anticorrosion properties.

13.
Nat Commun ; 14(1): 1464, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928189

RESUMO

Antimicrobial peptides (AMPs) are promising next-generation antibiotics that can be used to combat drug-resistant pathogens. However, the high cost involved in AMP synthesis and their short plasma half-life render their clinical translation a challenge. To address these shortcomings, we report efficient production of bioactive amidated AMPs by transient expression of glycine-extended AMPs in Nicotiana benthamiana line expressing the mammalian enzyme peptidylglycine α-amidating mono-oxygenase (PAM). Cationic AMPs accumulate to substantial levels in PAM transgenic plants compare to nontransgenic N. benthamiana. Moreover, AMPs purified from plants exhibit robust killing activity against six highly virulent and antibiotic resistant ESKAPE pathogens, prevent their biofilm formation, analogous to their synthetic counterparts and synergize with antibiotics. We also perform a base case techno-economic analysis of our platform, demonstrating the potential economic advantages and scalability for industrial use. Taken together, our experimental data and techno-economic analysis demonstrate the potential use of plant chassis for large-scale production of clinical-grade AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Animais , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/biossíntese , Mamíferos , Plantas , Nicotiana/química , Nicotiana/genética , Farmacorresistência Bacteriana/efeitos dos fármacos
14.
Biochim Biophys Acta ; 1808(9): 2289-96, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21683683

RESUMO

The twin-arginine translocase (Tat) system is used by many bacteria and plants to move folded proteins across the cytoplasmic or thylakoid membrane. In most bacteria, the TatA protein is believed to form a defined pore in the membrane through homo-oligomerization with other TatA protomers. The predicted secondary structure of TatA includes a transmembrane helix, an amphipathic helix, and an unstructured C-terminal region. Here biophysical and structural investigations were performed on a synthetic peptide representing the amphipathic region of TatA (residues 22 to 44, abbreviated TatAH2). The C-terminal region of TatA (residues 44-89) was previously shown to be accessible from both the cytoplasmic and periplasmic sides of the membrane only when the membrane potential was intact, suggesting dependence of its topology on an energized membrane (Chan et al. 2007 Biochemistry 46: 7396-404). Such observation suggests that the TatAH2 region would have unique lipid interactions that may be related to the function of TatA during translocation and thus warranted further investigations. NMR and CD spectroscopy of TatAH2 show that it adopts a predominantly helical structure in a membrane environment while remaining unstructured in aqueous solution. Differential scanning calorimetry studies also reveal that TatAH2 interacts with DPPG lipids but not with DPPC, suggesting that negatively charged phospholipid head groups contribute to the membrane interactions with TatA.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Peptidil Transferases/química , 1,2-Dipalmitoilfosfatidilcolina/química , Biofísica/métodos , Varredura Diferencial de Calorimetria/métodos , Dicroísmo Circular , Citoplasma/metabolismo , Fluoresceínas/química , Lipídeos/química , Espectroscopia de Ressonância Magnética/métodos , Potenciais da Membrana , Fosfatidilgliceróis/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
15.
Biochem Cell Biol ; 90(3): 362-77, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22250712

RESUMO

Lactoferrin is an 80 kDa iron binding protein found in the secretory fluids of mammals and it plays a major role in host defence. An antimicrobial peptide, lactoferrampin, was identified through sequence analysis of bovine lactoferrin and its antimicrobial activity against a wide range of bacteria and yeast species is well documented. In the present work, the contribution of specific amino acid residues of lactoferrampin was examined to evaluate the role that they play in membrane binding and bilayer disruption. The structures of all the bovine lactoferrampin derivatives were examined with circular dichroism and nuclear magnetic resonance spectroscopy, and their interactions with phospholipids were evaluated with differential scanning calorimetry and isothermal titration calorimetry techniques. From our results it is apparent that the amphipathic N-terminal helix anchors the peptide to membranes with Trp 268 and Phe 278 playing important roles in determining the strength of the interaction and for inducing peptide folding. In addition, the N-terminal helix capping residues (DLI) increase the affinity for negatively charged vesicles and they mediate the depth of membrane insertion. Finally, the unique flexibility in the cationic C-terminal region of bovine lactoferrampin does not appear to be essential for the antimicrobial activity of the peptide.


Assuntos
Antibacterianos/química , Lactoferrina/química , Fragmentos de Peptídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antibacterianos/farmacologia , Varredura Diferencial de Calorimetria , Bovinos , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise , Humanos , Lactoferrina/farmacologia , Micelas , Dados de Sequência Molecular , Fragmentos de Peptídeos/farmacologia , Fosfatidilgliceróis/química , Ligação Proteica , Estrutura Secundária de Proteína , Dodecilsulfato de Sódio/química , Streptococcus sanguis/efeitos dos fármacos , Termodinâmica , Lipossomas Unilamelares/química
16.
FASEB J ; 25(8): 2650-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21525488

RESUMO

Cyclic peptides are highly valued tools in biomedical research. In many cases, they show higher receptor affinity, enhanced biological activity, and improved serum stability. Technical difficulties in producing cyclic peptides, especially larger ones, in appreciable yields have precluded a prolific use in biomedical research. Here, we describe a novel and efficient cyclization method that uses the peptidyl-transferase activity of the Staphylococcus aureus enzyme sortase A to cyclize linear synthetic precursor peptides. As a model, we used histatin 1, a 38-mer salivary peptide with motogenic activity. Chemical cyclization of histatin 1 resulted in ≤ 3% yields, whereas sortase-mediated cyclization provided a yield of >90%. The sortase-cyclized peptide displayed a maximum wound closure activity at 10 nM, whereas the linear peptide displayed maximal activity at 10 µM. Circular dichroism and NMR spectroscopic analysis of the linear and cyclic peptide in solution showed no evidence for conformational changes, suggesting that structural differences due to cyclization only became manifest when these peptides were located in the binding domain of the receptor. The sortase-based cyclization technology provides a general method for easy and efficient manufacturing of large cyclic peptides.


Assuntos
Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Histatinas/biossíntese , Peptídeos Cíclicos/biossíntese , Sequência de Aminoácidos , Aminoaciltransferases/genética , Proteínas de Bactérias/genética , Linhagem Celular , Dicroísmo Circular , Cisteína Endopeptidases/genética , Histatinas/química , Histatinas/genética , Histatinas/farmacologia , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/farmacologia , Conformação Proteica , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Cicatrização/efeitos dos fármacos
17.
Beilstein J Org Chem ; 8: 1172-84, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23019445

RESUMO

A number of physicochemical characteristics have been described which contribute to the biological activity of antimicrobial peptides. This information was used to design a novel antimicrobial peptide sequence by using an intrinsically inactive membrane-associated peptide derived from the HIV glycoprotein, gp41, as a starting scaffold. This peptide corresponds to the tryptophan-rich membrane-proximal region of gp41, which is known to interact at the interfacial region of the viral membrane and adopts a helical structure in the presence of lipids. Three synthetic peptides were designed to increase the net positive charge and amphipathicity of this 19-residue peptide. Ultimately, the peptide with the greatest degree of amphipathicity and largest positive charge proved to be the most potent antimicrobial, and this peptide could be further modified to improve the antimicrobial activity. However, the other two peptides were relatively ineffective antimicrobials and instead proved to be extremely hemolytic. This work demonstrates a novel approach for the design of unexplored antimicrobial peptide sequences but it also reveals that the biological and cytotoxic activities of these polypeptides depend on a number of interrelated factors.

18.
Probiotics Antimicrob Proteins ; 14(4): 620-629, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35612776

RESUMO

Rotifers are used as the first feed for marine fish larvae and are grown in large cultures that have high loads of organic matter and heterotrophic bacteria; these bacteria are passed on to the developing fish larvae and can potentially lead to bacterial infections. A modified minimum inhibitory concentration (MIC) protocol for antimicrobial peptides was used to determine the potency of ten antimicrobial peptides (AMPs) in artificial seawater relevant to a rotifer culture (salinity of 25‰) against common marine pathogens. All of the AMPs had antimicrobial activity against the bacterial isolates when the salt concentration was approximately zero. However, in high salt concentrations, the majority of the AMPs had an MIC value greater than 65 µg mL-1 in artificial seawater (25‰). The only exceptions were 2009 (32.5 µg mL-1) and 3002 (32.5 µg mL-1) against Vibrio rotiferianus and Tenacibaculum discolor, respectively. The selected synthetic AMPs were not effective at reducing the bacterial load in brackish salt concentrations of a typical commercial rotifer culture (25‰).


Assuntos
Peptídeos Antimicrobianos , Rotíferos , Animais , Larva/microbiologia , Rotíferos/microbiologia , Água do Mar
19.
Eur J Pharm Biopharm ; 179: 11-25, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36028151

RESUMO

Innate defense regulators (IDRs) are synthetic host-defense peptides (HDPs) with broad-spectrum anti-infective properties, including immunomodulatory, anti-biofilm and direct antimicrobial activities. A lack of pharmacokinetic data about these peptides hinders their development and makes it challenging to fully understand how they work in vivo since their mechanism of action is dependent on tissue concentrations of the peptide. Here, we set out to define in detail the pharmacokinetics of a well-characterized IDR molecule, IDR-1018. To make the peptide traceable, it was radiolabeled with the long-lived gamma-emitting isotope gallium-67. After a series of bench-top characterizations, the radiotracer was administered to healthy mice intravenously (IV) or subcutaneously (SQ) at various dose levels (2.5-13 mg/kg). Nuclear imaging and ex-vivo biodistributions were used to quantify organ and tissue uptake of the radiotracer over time. When administered as an IV bolus, the distribution profile of the radiotracer changed as the dose was escalated. At 2.5 mg/kg, the peptide was well-tolerated, poorly circulated in the blood and was cleared predominantly by the reticuloendothelial system. Higher doses (7 and 13 mg/kg) as an IV bolus were almost immediately lethal due to respiratory arrest; significant lung uptake of the radiotracer was observed from nuclear scans of these animals, and histological examination found extensive damage to the pulmonary vasculature and alveoli. When administered SQ at a dose of 3 mg/kg, radiolabeled IDR-1018 was rapidly absorbed from the site of injection and predominately cleared renally. Apart from the SQ injection site, no other tissue had a concentration above the minimum inhibitory concentration that would enable this peptide to exert direct antimicrobial effects against most pathogenic bacteria. Tissue concentrations were sufficient, however, to disrupt microbial biofilms and alter the host immune response. Overall, this study demonstrated that the administration of synthetic IDR peptide in vivo is best suited to local administration which avoids some of the issues associated with peptide toxicity that are observed when administered systemically by IV injection, an issue that will have to be addressed through formulation.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Animais , Peptídeos Catiônicos Antimicrobianos/toxicidade , Imunidade Inata , Camundongos , Testes de Sensibilidade Microbiana , Distribuição Tecidual
20.
Cells ; 11(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36359854

RESUMO

Bacterial biofilm infections associated with wounded skin are prevalent, recalcitrant, and in urgent need of treatments. Additionally, host responses in the skin to biofilm infections are not well understood. Here we employed a human organoid skin model to explore the transcriptomic changes of thermally-injured epidermis to methicillin-resistant Staphylococcus aureus (MRSA) biofilm colonization. MRSA biofilm impaired skin barrier function, enhanced extracellular matrix remodelling, elicited inflammatory responses including IL-17, IL-12 family and IL-6 family interleukin signalling, and modulated skin metabolism. Synthetic antibiofilm peptide DJK-5 effectively diminished MRSA biofilm and associated skin inflammation in wounded human ex vivo skin. In the epidermis, DJK-5 shifted the overall skin transcriptome towards homeostasis including modulating the biofilm induced inflammatory response, promoting the skin DNA repair function, and downregulating MRSA invasion of thermally damaged skin. These data clarified the underlying immunopathogenesis of biofilm infections and revealed the intrinsic promise of synthetic peptides in reducing inflammation and biofilm infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Antibacterianos/farmacologia , Biofilmes , Epiderme/metabolismo , Peptídeos/metabolismo , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA