RESUMO
Gram-negative bacterial bloodstream infections (GNB-BSI) are common and frequently lethal. Despite appropriate antibiotic treatment, relapse of GNB-BSI with the same bacterial strain is common and associated with poor clinical outcomes and high healthcare costs. The role of persister cells, which are sub-populations of bacteria that survive for prolonged periods in the presence of bactericidal antibiotics, in relapse of GNB-BSI is unclear. Using a cohort of patients with relapsed GNB-BSI, we aimed to determine how the pathogen evolves within the patient between the initial and subsequent episodes of GNB-BSI and how these changes impact persistence. Using Escherichia coli clinical bloodstream isolate pairs (initial and relapse isolates) from patients with relapsed GNB-BSI, we found that 4/11 (36%) of the relapse isolates displayed a significant increase in persisters cells relative to the initial bloodstream infection isolate. In the relapsed E. coli strain with the greatest increase in persisters (100-fold relative to initial isolate), we determined that the increase was due to a loss-of-function mutation in the ptsI gene encoding Enzyme I of the phosphoenolpyruvate phosphotransferase system. The ptsI mutant was equally virulent in a murine bacteremia infection model but exhibited 10-fold increased survival to antibiotic treatment. This work addresses the controversy regarding the clinical relevance of persister formation by providing compelling data that not only do high-persister mutations arise during bloodstream infection in humans but also that these mutants display increased survival to antibiotic challenge in vivo.
Assuntos
Bacteriemia , Sepse , Humanos , Animais , Camundongos , Escherichia coli/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , RecidivaRESUMO
BACKGROUND: Clostridioides difficile infection (CDI) is a common healthcare-associated infection with limited treatment options. Omadacycline, an aminomethylcycline tetracycline, has potent in vitro activity against C difficile and a low propensity to cause CDI in clinical trials. We aimed to assess fecal pharmacokinetics and gut microbiome effects of oral omadacycline compared to oral vancomycin in healthy adults. METHODS: This was a phase 1, nonblinded, randomized clinical trial conducted in healthy volunteers aged 18-40 years. Subjects received a 10-day course of omadacycline or vancomycin. Stool samples were collected at baseline, daily during therapy, and at follow-up visits. Omadacycline and vancomycin stool concentrations were assessed, and microbiome changes were compared. RESULTS: Sixteen healthy volunteers with a mean age of 26 (standard deviation [SD], 5) years were enrolled; 62.5% were male, and participants' mean body mass index was 23.5 (SD, 4.0) kg/m2. Omadacycline was well tolerated with no safety signal differences between the 2 antibiotics. A rapid initial increase in fecal concentrations of omadacycline was observed compared to vancomycin, with maximum concentrations achieved within 48 hours. A significant difference in alpha diversity was observed following therapy in both the omadacycline and vancomycin groups (P < .05). Bacterial abundance and beta diversity analysis showed differing microbiome changes in subjects who received omadacycline versus vancomycin. CONCLUSIONS: Subjects given omadacycline had high fecal concentrations with a distinct microbiome profile compared to vancomycin. CLINICAL TRIALS REGISTRATION: NCT06030219.
Assuntos
Infecções por Clostridium , Microbioma Gastrointestinal , Adulto , Humanos , Masculino , Feminino , Vancomicina/uso terapêutico , Voluntários Saudáveis , Antibacterianos/uso terapêutico , Tetraciclinas/farmacologia , Tetraciclinas/uso terapêutico , Infecções por Clostridium/microbiologiaRESUMO
The association between persistent gram-negative bloodstream infection (GN-BSI), or ongoing positive cultures, and recurrent GN-BSI has not been investigated. Among 992 adults, persistent GN-BSI was associated with increased recurrent GN-BSI with the same bacterial species and strain (6% vs 2%; P = .04). Persistent GN-BSI may be a marker of complicated infection.
Assuntos
Bacteriemia , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Recidiva , Humanos , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/epidemiologia , Bacteriemia/microbiologia , Bacteriemia/epidemiologia , Masculino , Pessoa de Meia-Idade , Feminino , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/classificação , Idoso , Adulto , Fatores de RiscoRESUMO
The siderophore-cephalosporin cefiderocol (FDC) presents a promising treatment option for carbapenem-resistant (CR) P. aeruginosa (PA). FDC circumvents traditional porin and efflux-mediated resistance by utilizing TonB-dependent receptors (TBDRs) to access the periplasmic space. Emerging FDC resistance has been associated with loss of function mutations within TBDR genes or the regulatory genes controlling TBDR expression. Further, difficulties with antimicrobial susceptibility testing (AST) and unexpected negative clinical treatment outcomes have prompted concerns for heteroresistance, where a single lineage isolate contains resistant subpopulations not detectable by standard AST. This study aimed to evaluate the prevalence of TBDR mutations among clinical isolates of P. aeruginosa and the phenotypic effect on FDC susceptibility and heteroresistance. We evaluated the sequence of pirR, pirS, pirA, piuA, or piuD from 498 unique isolates collected before the introduction of FDC from four clinical sites in Portland, OR (1), Houston, TX (2), and Santiago, Chile (1). At some clinical sites, TBDR mutations were seen in up to 25% of isolates, and insertion, deletion, or frameshift mutations were predicted to impair protein function were seen in 3% of all isolates (n = 15). Using population analysis profile testing, we found that P. aeruginosa with major TBDR mutations were enriched for a heteroresistant phenotype and undergo a shift in the susceptibility distribution of the population as compared to susceptible strains with wild-type TBDR genes. Our results indicate that mutations in TBDR genes predate the clinical introduction of FDC, and these mutations may predispose to the emergence of FDC resistance.
Assuntos
Antibacterianos , Proteínas de Bactérias , Cefiderocol , Testes de Sensibilidade Microbiana , Mutação , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Humanos , Proteínas de Bactérias/genética , Cefalosporinas/farmacologia , Proteínas de Membrana/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Farmacorresistência Bacteriana/genéticaRESUMO
Daptomycin (DAP) is often used as a first-line therapy to treat vancomycin-resistant Enterococcus faecium infections, but emergence of DAP non-susceptibility threatens the effectiveness of this antibiotic. Moreover, current methods to determine DAP minimum inhibitory concentrations (MICs) have poor reproducibility and accuracy. In enterococci, DAP resistance is mediated by the LiaFSR cell membrane stress response system, and deletion of liaR encoding the response regulator results in hypersusceptibility to DAP and antimicrobial peptides. The main genes regulated by LiaR are a cluster of three genes, designated liaXYZ. In Enterococcus faecalis, LiaX is surface-exposed with a C-terminus that functions as a negative regulator of cell membrane remodeling and an N-terminal domain that is released to the extracellular medium where it binds DAP. Thus, in E. faecalis, LiaX functions as a sentinel molecule recognizing DAP and controlling the cell membrane response, but less is known about LiaX in E. faecium. Here, we found that liaX is essential in E. faecium with an activated LiaFSR system. Unlike E. faecalis, E. faecium LiaX is not detected in the extracellular milieu and does not appear to alter phospholipid architecture. We further postulated that LiaX could be used as a surrogate marker for cell envelope activation and non-susceptibility to DAP. For this purpose, we developed and optimized a LiaX enzyme-linked immunosorbent assay (ELISA). We then assessed 86 clinical E. faecium bloodstream isolates for DAP MICs and used whole genome sequencing to assess for substitutions in LiaX. All DAP-resistant clinical strains of E. faecium exhibited elevated LiaX levels. Strikingly, 73% of DAP-susceptible isolates by standard MIC determination also had elevated LiaX ELISAs compared to a well-characterized DAP-susceptible strain. Phylogenetic analyses of predicted amino acid substitutions showed 12 different variants of LiaX without a specific association with DAP MIC or LiaX ELISA values. Our findings also suggest that many E. faecium isolates that test DAP susceptible by standard MIC determination are likely to have an activated cell stress response that may predispose to DAP failure. As LiaX appears to be essential for the cell envelope response to DAP, its detection could prove useful to improve the accuracy of susceptibility testing by anticipating therapeutic failure.
Assuntos
Membrana Celular , Daptomicina , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Humanos , Antibacterianos/uso terapêutico , Biomarcadores/metabolismo , Daptomicina/farmacologia , Daptomicina/uso terapêutico , Farmacorresistência Bacteriana/genética , Enterococcus faecalis , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/metabolismo , Testes de Sensibilidade Microbiana , Filogenia , Reprodutibilidade dos TestesRESUMO
BACKGROUND: The causes and clinical characteristics of recurrent gram-negative bacterial bloodstream infections (GNB-BSI) are poorly understood. METHODS: We used a cohort of patients with GNB-BSI to identify clinical characteristics, microbiology, and risk factors associated with recurrent GNB-BSI. Bacterial genotyping (pulsed-field gel electrophoresis [PFGE] and whole-genome sequencing [WGS]) was used to determine whether episodes were due to relapse or reinfection. Multivariable logistic regression was used to identify risk factors for recurrence. RESULTS: Of the 1423 patients with GNB-BSI in this study, 60 (4%) had recurrent GNB-BSI. Non-White race (odds ratio [OR], 2.35; 95% confidence interval [CI], 1.38-4.01; P = .002), admission to a surgical service (OR, 2.18; 95% CI, 1.26-3.75; P = .005), and indwelling cardiac device (OR, 2.73; 95% CI, 1.21-5.58; P = .009) were associated with increased risk for recurrent GNB-BSI. Among the 48 patients with recurrent GNB-BSI whose paired bloodstream isolates underwent genotyping, 63% were due to relapse (30 of 48) and 38% were due to reinfection (18 of 48) based on WGS. Compared with WGS, PFGE correctly differentiated relapse and reinfection in 98% (47 of 48) of cases. Median time to relapse and reinfection was similar (113 days; interquartile range [IQR], 35-222 vs 174 days; IQR, 69-599; P = .13). Presence of a cardiac device was associated with relapse (relapse: 7 of 27, 26%; nonrelapse: 65 of 988, 7%; P = .002). CONCLUSIONS: In this study, recurrent GNB-BSI was most commonly due to relapse. PFGE accurately differentiated relapse from reinfection when compared with WGS. Cardiac device was a risk factor for relapse.
Assuntos
Bacteriemia , Infecções por Bactérias Gram-Negativas , Sepse , Humanos , Reinfecção , Bacteriemia/microbiologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/microbiologia , Sepse/complicações , Recidiva , Fatores de Risco , Estudos RetrospectivosRESUMO
In the United States, vanB-mediated resistance in enterococci is rare. We characterized three sequence type (ST) 6, vancomycin-resistant Enterococcus faecalis isolates causing bacteremia in unique patients in spatiotemporally distinct settings. Isolates were recovered between 2018 and 2020 in two cities in the United States (Houston, TX; Miami, FL). The isolates harbored the vanB operon on a chromosomally located Tn1549 transposon, and epidemiological data suggested multiple introductions of the vanB gene cluster into ST6 E. faecalis.
Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Enterococos Resistentes à Vancomicina , Humanos , Enterococcus faecalis/genética , Resistência a Vancomicina/genética , Florida/epidemiologia , Texas/epidemiologia , Enterococos Resistentes à Vancomicina/genética , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Proteínas de Bactérias/genética , Antibacterianos/farmacologiaRESUMO
BACKGROUND: Clostridioides difficile infection (CDI) is a leading cause of hospital-associated antibiotic-related diarrhea and deaths worldwide. Vancomycin is one of the few antibiotics recommended for both nonsevere and severe CDI cases. We sought to determine whether vancomycin nonsusceptible C. difficile strains are circulating in the patient population. METHODS: Stool samples from patients with CDI were collected from 438 and 98 patients at a large university hospital in Houston, Texas, and Nairobi, Kenya, respectively. The stools were examined for the presence of vancomycin and metronidazole nonsusceptible C. difficile using broth dilution culture, Etest (BioMérieux, France), polymerase chain reaction (PCR), whole-genome sequencing, and in vivo testing in a CDI mouse model. RESULTS: Of the Houston stool samples, 114/438 (26%) had vancomycin nonsusceptible C. difficile isolates and 128/438 (29%) were metronidazole nonsusceptible. Similarly, 66 out of 98 (67%) and 83/98 (85%) of the Nairobi patients harbored vancomycin and metronidazole nonsusceptible isolates, respectively. Vancomycin treatment of a CDI mouse model infected with a vancomycin nonsusceptible isolate failed to eradicate the infection. Whole-genome sequencing analyses did not identify vanA genes, suggesting a different mechanism of resistance. CONCLUSIONS: C. difficile strains exhibiting reduced susceptibility to vancomycin are currently circulating in patient populations. The spread of strains resistance to vancomycin, a first-line antibiotic for CDI, poses a serious therapeutic challenge. Routine susceptibility testing may be necessary.
Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Clostridioides , Infecções por Clostridium/tratamento farmacológico , Humanos , Quênia , Camundongos , Vancomicina/farmacologia , Vancomicina/uso terapêuticoRESUMO
BACKGROUND: This study was the first human validation of the gram-positive bacterial DNA polymerase IIIC target in patients with Clostridioides difficile infection. The primary objectives were to assess clinical cure rates and adverse events (AEs). Secondary objectives were to evaluate plasma/fecal pharmacokinetics, microbiologic eradication, microbiome and bile acid effects, and sustained clinical cure (SCC) with ibezapolstat. METHODS: This single-arm, open-label, phase 2a study enrolled adults with C. difficile infection at 4 US centers. Patients received ibezapolstat 450 mg orally every 12 hours for 10 days and followed for an additional 28 days to assess study objectives. RESULTS: Ten patients with a mean (standard deviation [SD]) age of 49 [15] years were enrolled. Seven AEs were reported classified as mild-moderate. Plasma levels of ibezapolstat ranged from 233 to 578 ng/mL while mean (SD) fecal levels were 416 (494) µg/g stool by treatment day 3 and >1000 µg/g stool by days 8-10. A rapid increase in alpha diversity in the fecal microbiome was noted after starting ibezapolstat therapy, which was maintained after completion of therapy. A proportional decrease in Bacteroidetes phylum was observed (mean change [SD], -10.0% [4.8%]; Pâ =â .04) with a concomitantly increased proportion of Firmicutes phylum (+14.7% [5.4%]; Pâ =â .009). Compared with baseline, total primary bile acids decreased by a mean (SD) of 40.1 (9.6) ng/mg stool during therapy (Pâ <â .001) and 40.5 (14.1) ng/mg stool after completion of therapy (Pâ =â .007). Rates of both initial clinical cure and SCC at 28 days were 100% (10 of 10 patients). CONCLUSIONS: In this phase 2a study, 10 of 10 patients achieved SCC, demonstrated favorable pharmacokinetics, minimal AEs, and beneficial microbiome and bile acids results. These results support continued clinical development.
Assuntos
Antibacterianos , Clostridioides difficile , Infecções por Clostridium , Adulto , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Ácidos e Sais Biliares , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/microbiologia , DNA Polimerase Dirigida por DNA , Humanos , Pessoa de Meia-IdadeAssuntos
Virus da Influenza A Subtipo H5N1 , Águas Residuárias , Animais , Bovinos , Humanos , Aves/virologia , Cidades , Fazendeiros , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/prevenção & controle , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Influenza Humana/virologia , Gado/virologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Análise de Sequência de DNA , Águas Residuárias/virologia , Monitoramento EpidemiológicoRESUMO
Antistaphylococcal penicillins and cefazolin remain the primary treatments for infections with methicillin-susceptible Staphylococcus aureus (MSSA). The cefazolin inoculum effect (CzIE) causes the cefazolin MIC to be elevated in proportion to the number of bacteria in the inoculum. The objective of this multicenter study was to evaluate the prevalence of the CzIE in North American MSSA isolates. Clinical MSSA isolates from six microbiology laboratories in the United States and one microbiology laboratory in Canada were screened for the CzIE by broth microdilution at a standard inoculum (~5 × 105 CFU/mL) and a high inoculum (~5 × 107 CFU/mL). Genome sequencing was performed to further characterize the MSSA isolates. The CzIE was present in 57/305 (18.6%) MSSA isolates, ranging from 0% to 27.9% across study sites. More of the CzIE-positive isolates (29.8%) had standard inoculum cefazolin MICs of 1.0 µg/mL than the CzIE-negative isolates did (3.2%) (P < 0.0001). Conversely, more CzIE-negative isolates (39.5%) had standard inoculum MICs of 0.25 µg/mL than the CzIE positive isolates did (5.3%) (P < 0.0001). The most common BlaZ ß-lactamase types found in the CzIE-positive strains were type C (53.7%) and type A (44.4%). ST8 and ST30 were the most common sequence types among CzIE-positive isolates and correlated with BlaZ type C and A, respectively. The CzIE was present in up to a quarter of clinical MSSA isolates from North American clinical laboratories. Further studies to determine the impact of the presence of the CzIE on clinical outcomes are needed.
Assuntos
Bacteriemia , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/microbiologia , Cefazolina/farmacologia , Humanos , Meticilina , América do Norte , Prevalência , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genéticaRESUMO
BACKGROUND: Vancomycin-resistant enterococci (VRE) are a major cause of morbidity and mortality in immunocompromised patients. Tracking the dissemination of VRE strains is crucial to understand the dynamics of emergence and spread of VRE in the hospital setting. METHODS: Whole genome sequencing (WGS) and phylogenetic analyses were performed to identify dominant VRE strains and potential transmission networks between 35 patients with VRE-positive rectal swabs and their rooms (main rooms and bathrooms) on the leukemia (LKM) and the hematopoietic cell transplant (HCT) floors. Sequence types (STs), drug resistance genes, and patients' outcomes were also determined. RESULTS: A total of 89 VRE strains grouped into 10 different STs, of which newly described STs were isolated from both floors (ST736, ST494, ST772, and ST1516). We observed highly genetically related strains transmitted between rooms, floors, and time periods in an average period of 39 days (ranging from 3 to 90 days). Of 5 VRE bacteremia events, 3 strains were lacking the pili operon fms14-17-13 (ST203) and the remaining 2 were resistant to daptomycin (DAP; ST736, ST664). Of 10 patients harboring DAP-resistant strains, only 2 were exposed to DAP within 4 months before strain recovery. CONCLUSIONS: Our comparisons of VRE strains derived from the environment and immunocompromised patients confirmed horizontal transfer of highly related genetic lineages of multidrug-resistant (particularly to DAP) VRE strains between HCT and LKM patients and their room environment. Implementing WGS can be useful in distinguishing VRE reservoirs where interventions can be targeted to prevent and control the spread of highly resistant organisms.
Assuntos
Daptomicina , Infecções por Bactérias Gram-Positivas , Transplante de Células-Tronco Hematopoéticas , Enterococos Resistentes à Vancomicina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Daptomicina/farmacologia , Daptomicina/uso terapêutico , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/epidemiologia , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Enterococos Resistentes à Vancomicina/genéticaRESUMO
Clinical cases of C. auris noted during a COVID-19 surge led to an epidemiological, clinical, and genomic investigation. Evaluation identified a close genetic relationship but inconclusive epidemiologic link between all cases. Prolonged hospitalization due to critical illness from COVID-19 and use of antimicrobials may have contributed to clinical infections.
Assuntos
COVID-19 , Candidíase Invasiva , Antifúngicos/uso terapêutico , Candida/genética , Candidíase Invasiva/tratamento farmacológico , Humanos , SARS-CoV-2RESUMO
PURPOSE OF REVIEW: The advancement of molecular techniques such as whole-genome sequencing (WGS) has revolutionized the field of bacterial strain typing, with important implications for epidemiological surveillance and outbreak investigations. This review summarizes state-of-the-art techniques in strain typing and examines barriers faced by clinical and public health laboratories in implementing these new methodologies. RECENT FINDINGS: WGS-based methodologies are on track to become the new 'gold standards' in bacterial strain typing, replacing traditional methods like pulsed-field gel electrophoresis and multilocus sequence typing. These new techniques have an improved ability to identify genetic relationships among organisms of interest. Further, advances in long-read sequencing approaches will likely provide a highly discriminatory tool to perform pangenome analyses and characterize relevant accessory genome elements, including mobile genetic elements carrying antibiotic resistance determinants in real time. Barriers to widespread integration of these approaches include a lack of standardized workflows and technical training. SUMMARY: Genomic bacterial strain typing has facilitated a paradigm shift in clinical and molecular epidemiology. The increased resolution that these new techniques provide, along with epidemiological data, will facilitate the rapid identification of transmission routes with high confidence, leading to timely and effective deployment of infection control and public health interventions in outbreak settings.
Assuntos
Antibacterianos , Surtos de Doenças , Técnicas de Tipagem Bacteriana , Eletroforese em Gel de Campo Pulsado , Genoma Bacteriano/genética , Humanos , Epidemiologia Molecular , Tipagem de Sequências MultilocusRESUMO
BACKGROUND: Approximately half of clinical carbapenem-resistant Enterobacterales (CRE) isolates lack carbapenem-hydrolysing enzymes and develop carbapenem resistance through alternative mechanisms. OBJECTIVES: To elucidate development of carbapenem resistance mechanisms from clonal, recurrent ESBL-positive Enterobacterales (ESBL-E) bacteraemia isolates in a vulnerable patient population. METHODS: This study investigated a cohort of ESBL-E bacteraemia cases in Houston, TX, USA. Oxford Nanopore Technologies long-read and Illumina short-read sequencing data were used for comparative genomic analysis. Serial passaging experiments were performed on a set of clinical ST131 Escherichia coli isolates to recapitulate in vivo observations. Quantitative PCR (qPCR) and qRT-PCR were used to determine copy number and transcript levels of ß-lactamase genes, respectively. RESULTS: Non-carbapenemase-producing CRE (non-CP-CRE) clinical isolates emerged from an ESBL-E background through a concurrence of primarily IS26-mediated amplifications of blaOXA-1 and blaCTX-M-1 group genes coupled with porin inactivation. The discrete, modular translocatable units (TUs) that carried and amplified ß-lactamase genes mobilized intracellularly from a chromosomal, IS26-bound transposon and inserted within porin genes, thereby increasing ß-lactamase gene copy number and inactivating porins concurrently. The carbapenem resistance phenotype and TU-mediated ß-lactamase gene amplification were recapitulated by passaging a clinical ESBL-E isolate in the presence of ertapenem. Clinical non-CP-CRE isolates had stable carbapenem resistance phenotypes in the absence of ertapenem exposure. CONCLUSIONS: These data demonstrate IS26-mediated mechanisms underlying ß-lactamase gene amplification with concurrent outer membrane porin disruption driving emergence of clinical non-CP-CRE. Furthermore, these amplifications were stable in the absence of antimicrobial pressure. Long-read sequencing can be utilized to identify unique mobile genetic element mechanisms that drive antimicrobial resistance.
Assuntos
Bacteriemia , Porinas , Antibacterianos/farmacologia , Bacteriemia/tratamento farmacológico , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Porinas/genética , beta-Lactamases/genética , beta-Lactamases/metabolismoRESUMO
Carbapenem-resistant Enterobacterales (CRE) pose a significant threat to global public health. The most important mechanism for carbapenem resistance is the production of carbapenemases. Klebsiella pneumoniae carbapenemase (KPC) represents one of the main carbapenemases worldwide. Complex mechanisms of blaKPC dissemination have been reported in Colombia, a country with a high endemicity of carbapenem resistance. Here, we characterized the dynamics of dissemination of blaKPC gene among CRE infecting and colonizing patients in three hospitals localized in a highly endemic area of Colombia (2013 and 2015). We identified the genomic characteristics of KPC-producing Enterobacterales recovered from patients infected/colonized and reconstructed the dynamics of dissemination of blaKPC-2 using both short and long read sequencing. We found that spread of blaKPC-2 among Enterobacterales in the participating hospitals was due to intra- and interspecies horizontal gene transfer (HGT) mediated by promiscuous plasmids associated with transposable elements that was originated from a multispecies outbreak of KPC-producing Enterobacterales in a neonatal intensive care unit. The plasmids were detected in isolates recovered in other units within the same hospital and nearby hospitals. The gene "epidemic" was driven by IncN-pST15-type plasmids carrying a novel Tn4401b structure and non-Tn4401 elements (NTEKPC) in Klebsiella spp., Escherichia coli, Enterobacter spp., and Citrobacter spp. Of note, mcr-9 was found to coexist with blaKPC-2 in species of the Enterobacter cloacae complex. Our findings suggest that the main mechanism for dissemination of blaKPC-2 is HGT mediated by highly transferable plasmids among species of Enterobacterales in infected/colonized patients, presenting a major challenge for public health interventions in developing countries such as Colombia.
Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Proteínas de Bactérias/genética , Carbapenêmicos , Colômbia/epidemiologia , Humanos , Recém-Nascido , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Plasmídeos/genética , beta-Lactamases/genéticaRESUMO
Background: Carbapenem resistance is a critical healthcare challenge worldwide. Particularly concerning is the widespread dissemination of Klebsiella pneumoniae carbapenemase (KPC). Klebsiella pneumoniae harboring blaKPC (KPC-Kpn) is endemic in many areas including the United States, where the epidemic was primarily mediated by the clonal dissemination of Kpn ST258. We postulated that the spread of blaKPC in other regions occurs by different and more complex mechanisms. To test this, we investigated the evolution and dynamics of spread of KPC-Kpn in Colombia, where KPC became rapidly endemic after emerging in 2005. Methods: We sequenced the genomes of 133 clinical isolates recovered from 24 tertiary care hospitals located in 10 cities throughout Colombia, between 2002 (before the emergence of KPC-Kpn) and 2014. Phylogenetic reconstructions and evolutionary mapping were performed to determine temporal and genetic associations between the isolates. Results: Our results indicate that the start of the epidemic was driven by horizontal dissemination of mobile genetic elements carrying blaKPC-2, followed by the introduction and subsequent spread of clonal group 258 (CG258) isolates containing blaKPC-3. Conclusions: The combination of 2 evolutionary mechanisms of KPC-Kpn within a challenged health system of a developing country created the "perfect storm" for sustained endemicity of these multidrug-resistant organisms in Colombia.
Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Epidemias , Evolução Molecular , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Cidades/epidemiologia , Colômbia/epidemiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Transmissão de Doença Infecciosa , Transferência Genética Horizontal , Humanos , Sequências Repetitivas Dispersas , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/isolamento & purificação , Epidemiologia Molecular , Filogenia , Análise de Sequência de DNA , Centros de Atenção Terciária , Sequenciamento Completo do GenomaRESUMO
Ceftazidime-avibactam is an antibiotic with activity against serine beta-lactamases, including Klebsiella pneumoniae carbapenemase (KPC). Recently, reports have emerged of KPC-producing isolates resistant to this antibiotic, including a report of a wild-type KPC-3 producing sequence type 258 Klebsiella pneumoniae that was resistant to ceftazidime-avibactam. We describe a detailed analysis of this isolate, in the context of two other closely related KPC-3 producing isolates, recovered from the same patient. Both isolates encoded a nonfunctional OmpK35, whereas we demonstrate that a novel T333N mutation in OmpK36, present in the ceftazidime-avibactam resistant isolate, reduced the activity of this porin and impacted ceftazidime-avibactam susceptibility. In addition, we demonstrate that the increased expression of blaKPC-3 and blaSHV-12 observed in the ceftazidime-avibactam-resistant isolate was due to transposition of the Tn4401 transposon harboring blaKPC-3 into a second plasmid, pIncX3, which also harbored blaSHV-12, ultimately resulting in a higher copy number of blaKPC-3 in the resistant isolate. pIncX3 plasmid from the ceftazidime-avibactam resistant isolate, conjugated into a OmpK35/36-deficient K. pneumoniae background that harbored a mutation to the ramR regulator of the acrAB efflux operon recreated the ceftazidime-avibactam-resistant MIC of 32 µg/ml, confirming that this constellation of mutations is responsible for the resistance phenotype.