Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 101(3): 1834-1842, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29331460

RESUMO

Surface-layer associated proteins (SLAP) of Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L were examined to identify the functional basis for their protection within intestinal epithelial cells. The results showed that SLAP of M5-L and Q8-L remained active in a trypsin solution and retained a 45-kDa protein band, similar to that observed in controls. In contrast, under conditions of simulated gastric juice, the SLAP were partially degraded. Inhibitory effects of SLAP on adherence of Shigella sonnei to HT-29 cells were assessed with use of exclusion, competition, and replacement assays. In response to M5-L at 50 µg/mL SLAP, an inhibition ratio of 33% was obtained, while for Q8-L at 400 µg/mL SLAP, the inhibition ratio was 48%. Hoechst 33258 test results showed that cells infected with S. sonnei and co-incubated with SLAP of M5-L and Q8-L were only partially apoptotic, with apoptosis rates of 37.67 and 43.67%, respectively. These levels of apoptosis were substantially lower than that observed with cells infected with S. sonnei alone. In addition, the SLAP of Q8-L and M5-L reduced downstream caspase-1 activity and further modified apoptotic cell damage. Finally, SLAP of M5-L and Q8-L were also able to prevent S. sonnei-induced membrane damage by inhibiting delocalization of zonula occludens (ZO)-1 and reducing the amount of occludin produced by S. sonnei.


Assuntos
Aderência Bacteriana , Alimentos Fermentados , Lacticaseibacillus casei/fisiologia , Lacticaseibacillus paracasei/fisiologia , Glicoproteínas de Membrana/fisiologia , Shigella sonnei/patogenicidade , Animais , Apoptose , Células HT29 , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Junções Íntimas/microbiologia , Junções Íntimas/patologia
2.
EMBO Mol Med ; 16(7): 1704-1716, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38902433

RESUMO

Current brain tumor treatments are limited by the skull and BBB, leading to poor prognosis and short survival for glioma patients. We introduce a novel minimally-invasive brain tumor suppression (MIBTS) device combining personalized intracranial electric field therapy with in-situ chemotherapeutic coating. The core of our MIBTS technique is a wireless-ultrasound-powered, chip-sized, lightweight device with all functional circuits encapsulated in a small but efficient "Swiss-roll" structure, guaranteeing enhanced energy conversion while requiring tiny implantation windows ( ~ 3 × 5 mm), which favors broad consumers acceptance and easy-to-use of the device. Compared with existing technologies, competitive advantages in terms of tumor suppressive efficacy and therapeutic resolution were noticed, with maximum ~80% higher suppression effect than first-line chemotherapy and 50-70% higher than the most advanced tumor treating field technology. In addition, patient-personalized therapy strategies could be tuned from the MIBTS without increasing size or adding circuits on the integrated chip, ensuring the optimal therapeutic effect and avoid tumor resistance. These groundbreaking achievements of MIBTS offer new hope for controlling tumor recurrence and extending patient survival.


Assuntos
Neoplasias Encefálicas , Neoplasias Encefálicas/terapia , Humanos , Animais , Antineoplásicos/uso terapêutico , Glioma/terapia , Camundongos , Terapia por Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/instrumentação
3.
Front Psychol ; 14: 1107176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168425

RESUMO

Driver's cognitive workload has an important impact on driving safety. This paper carries out an on-road experiment to analyse the impact from three innovative aspects: significance analysis of electroencephalogram (EEG) under different cognitive workloads, distribution of EEG maps with different frequency signals and influence of different cognitive workloads on driving safety based on EEG. First, the EEG signals are processed and four frequencies of delta, theta, alpha and beta are obtained. Then, the time-frequency transform and power spectral density calculation are carried out by short-time Fourier to study the correlation of each frequency signal of different workload states, as well as the distribution pattern of the EEG topographic map. Finally, the time and space energy and phase changes in each cognitive task event are studied through event-related spectral perturbation and inter-trial coherence. Results show the difference between left and right brains, as well as the resource occupancy trends of the monitor, perception, visual and auditory channels in different driving conditions. Results also demonstrate that the increase in cognitive workloads will directly affect driving safety. Changes in cognitive workload have different effects on brain signals, and this paper can provide a theoretical basis for improving driving safety under different cognitive workloads. Mastering the EEG characteristics of signals can provide more targeted supervision and safety warnings for the driver.

4.
Heliyon ; 8(12): e12145, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36561664

RESUMO

Spinel LiMn2O4 cathode material was obtained by a recalcination treatment, which exhibits excellent crystallization and electrochemical performance. A series of test and analysis results revealed that the performance enhancement of as-prepared sample is related to the crystal structure, morphology and electrochemical properties. Owing to the recalcination treatment, the spinel LiMn2O4 presents a truncated-octahedral morphology with selective growth of the (110) and (100) crystal planes, which would effectively inhibit manganese dissolution. Moreover, the optimized sample exhibits a better crystallinity and electrochemical reversibility than that of pristine sample, which can provide a faster Li ion de-intercalation/intercalation kinetics. Hence, the spinel LiMn2O4 cathode material delivers a high initial discharge capacity of 112.3 mAh·g-1 with a good capacity retention of 90.3% after 500 cycles and an excellent rate performance. This study constructed a facile and meaningful method to prepare spinel LiMn2O4 cathode material, which may facilitate the development of lithium-ion batteries.

5.
Polymers (Basel) ; 13(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920308

RESUMO

Management of waste from carbon fibre composites has become a significant societal issue as the application of composite grows across many industries. In this study, carbon fibres (CF) were successfully recovered from cured carbon fibre/epoxy (CF/EP) prepreg under microwave pyrolysis at 450, 550 and 650 °C followed by oxidation of any residual char. The recovered fibres were investigated for their tensile properties, surface morphologies and the elements/functional groups presented on the surface. The chemical compositions of gaseous and oil pyrolysis products were also analysed. The microwave pyrolysis effectively pyrolyzed the epoxy (EP) resin. Char residue remained on the fibre surface and the amount of char reduced as the pyrolysis temperature increased. Compared to virgin fibres, the recovered fibre suffered from a strength reduction by less than 20%, and this reduction could be mitigated by reducing the pyrolysis temperature. The surface of recovered fibre remained clean and smooth, while the profile of elements and functional groups at the surface were similar to those of virgin fibres. The main gaseous products were CO, H2, CO2 and CH4, whilst the liquid product stream included phenolic and aromatic compounds.

6.
Sci Total Environ ; 702: 135054, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31734612

RESUMO

Wind energy has been considered as one of the greenest renewable energy sources over the last two decades. However, attention is turning to reducing the possible environmental impacts from this sector. We argue that wind energy would not be effectively "green" if anthropogenic materials are not given attention in a responsible manner. Using the concept of the circular economy, this paper considers how anthropogenic materials in the form of carbon fibers can reenter the circular economy system at the highest possible quality. This paper first investigates the viability of a carbon-fiber-reinforced polymer extraction process using thermal pyrolysis to recalibrate the maximum carbon fiber value by examining the effect of (a) heating rate, (b) temperature, and (c) inert gas flow rate on char yield. With cleaner and higher quality recovered carbon fibers, this paper discusses the economic preconditions for the takeoff and growth of the industry and recommends the reuse of extracted carbon fibers to close the circular economy loop.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA