Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 16(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38794729

RESUMO

Polymethoxyflavonoids, such as nobiletin (abundant in Citrus depressa), have been reported to have antioxidant, anti-inflammatory, anticancer, and anti-dementia effects, and are also a circadian clock modulator through retinoic acid receptor-related orphan receptor (ROR) α/γ. However, the optimal timing of nobiletin intake has not yet been determined. Here, we explored the time-dependent treatment effects of nobiletin and a possible novel mechanistic idea for nobiletin-induced circadian clock regulation in mice. In vivo imaging showed that the PER2::LUC rhythm in the peripheral organs was altered in accordance with the timing of nobiletin administration (100 mg/kg). Administration at ZT4 (middle of the light period) caused an advance in the peripheral clock, whereas administration at ZT16 (middle of the dark period) caused an increase in amplitude. In addition, the intraperitoneal injection of nobiletin significantly and potently stimulated corticosterone and adrenaline secretion and caused an increase in Per1 expression in the peripheral tissues. Nobiletin inhibited phosphodiesterase (PDE) 4A1A, 4B1, and 10A2. Nobiletin or rolipram (PDE4 inhibitor) injection, but not SR1078 (RORα/γ agonist), caused acute Per1 expression in the peripheral tissues. Thus, the present study demonstrated a novel function of nobiletin and the regulation of the peripheral circadian clock.


Assuntos
Relógios Circadianos , Corticosterona , Flavonas , Animais , Flavonas/farmacologia , Relógios Circadianos/efeitos dos fármacos , Camundongos , Masculino , Corticosterona/sangue , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Epinefrina , Camundongos Endogâmicos C57BL , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia
2.
Sleep Biol Rhythms ; 20(2): 255-266, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38469255

RESUMO

Introduction: In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which coordinates the circadian rhythm and controls locomotor activity rhythms. In addition to SCN cells, the peripheral tissues and embryonic fibroblasts also have clock genes, such as Per1/2 and Bmal1, which generate the transcriptional-translational feedback loop to produce an approximately 24-h cycle. Aging adversely affects the circadian clock system and locomotor functions. Oak extract has been reported to improve age-related physiological changes. However, no study has examined the effect of oak extract on the circadian clock system. Methods: We examined the effects of oak extract and its metabolites (urolithin A [ULT] and ellagic acid [EA]) on clock gene expression rhythms in mouse embryonic fibroblasts (MEFs) and SCN. Furthermore, locomotor activity rhythm was assessed in young and aged mice. Results: Chronic treatment with EA and ULT delayed the phase of PER2::LUC rhythms in SCN explants, and ULT prolonged the period of PER2::LUC rhythms in MEFs in a dose-dependent manner and increased the amplitude of PER2::LUC rhythms in MEFs, though only at low concentrations. Acute treatment with ULT affected the phase of PER2::LUC rhythms in MEFs depending on the concentration and timing of the treatment. In addition, oak extract prolonged the activity time of behavioral rhythms in old mice and tended to increase daily wheel-running revolutions in both young and old mice. Conclusions: These results suggest that oak extract is a novel modulator of the circadian clock in vitro and in vivo. Supplementary Information: The online version contains supplementary material available at 10.1007/s41105-021-00365-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA