Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 163(4): 894-906, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26544938

RESUMO

A deficiency in pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of human deafness. Pejvakin-deficient (Pjvk(-/-)) mice also exhibit variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggest a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation show that the cochlear sensory hair cells and auditory pathway neurons of Pjvk(-/-) mice and patients are exceptionally vulnerable to sound. Subcellular analysis revealed that pejvakin is associated with peroxisomes and required for their oxidative-stress-induced proliferation. Pjvk(-/-) cochleas display features of marked oxidative stress and impaired antioxidant defenses, and peroxisomes in Pjvk(-/-) hair cells show structural abnormalities after the onset of hearing. Noise exposure rapidly upregulates Pjvk cochlear transcription in wild-type mice and triggers peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the antioxidant activity of peroxisomes protects the auditory system against noise-induced damage.


Assuntos
Perda Auditiva Provocada por Ruído/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peroxissomos/metabolismo , Proteínas/metabolismo , Animais , Vias Auditivas , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Perda Auditiva Provocada por Ruído/patologia , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Estresse Oxidativo , Proteínas/genética
2.
Proc Natl Acad Sci U S A ; 116(51): 25948-25957, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31776257

RESUMO

The function of outer hair cells (OHCs), the mechanical actuators of the cochlea, involves the anchoring of their tallest stereocilia in the tectorial membrane (TM), an acellular structure overlying the sensory epithelium. Otogelin and otogelin-like are TM proteins related to secreted epithelial mucins. Defects in either cause the DFNB18B and DFNB84B genetic forms of deafness, respectively, both characterized by congenital mild-to-moderate hearing impairment. We show here that mutant mice lacking otogelin or otogelin-like have a marked OHC dysfunction, with almost no acoustic distortion products despite the persistence of some mechanoelectrical transduction. In both mutants, these cells lack the horizontal top connectors, which are fibrous links joining adjacent stereocilia, and the TM-attachment crowns coupling the tallest stereocilia to the TM. These defects are consistent with the previously unrecognized presence of otogelin and otogelin-like in the OHC hair bundle. The defective hair bundle cohesiveness and the absence of stereociliary imprints in the TM observed in these mice have also been observed in mutant mice lacking stereocilin, a model of the DFNB16 genetic form of deafness, also characterized by congenital mild-to-moderate hearing impairment. We show that the localizations of stereocilin, otogelin, and otogelin-like in the hair bundle are interdependent, indicating that these proteins interact to form the horizontal top connectors and the TM-attachment crowns. We therefore suggest that these 2 OHC-specific structures have shared mechanical properties mediating reaction forces to sound-induced shearing motion and contributing to the coordinated displacement of stereocilia.


Assuntos
Células Ciliadas Auditivas Externas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Estereocílios/metabolismo , Membrana Tectorial/metabolismo , Animais , Cóclea/citologia , Surdez/congênito , Surdez/genética , Surdez/metabolismo , Predisposição Genética para Doença , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Vestibulares/metabolismo , Perda Auditiva Neurossensorial/congênito , Perda Auditiva Neurossensorial/genética , Camundongos , Camundongos Knockout , Membrana Tectorial/citologia
3.
Proc Natl Acad Sci U S A ; 116(10): 4496-4501, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782832

RESUMO

Autosomal recessive genetic forms (DFNB) account for most cases of profound congenital deafness. Adeno-associated virus (AAV)-based gene therapy is a promising therapeutic option, but is limited by a potentially short therapeutic window and the constrained packaging capacity of the vector. We focus here on the otoferlin gene underlying DFNB9, one of the most frequent genetic forms of congenital deafness. We adopted a dual AAV approach using two different recombinant vectors, one containing the 5' and the other the 3' portions of otoferlin cDNA, which exceed the packaging capacity of the AAV when combined. A single delivery of the vector pair into the mature cochlea of Otof-/- mutant mice reconstituted the otoferlin cDNA coding sequence through recombination of the 5' and 3' cDNAs, leading to the durable restoration of otoferlin expression in transduced cells and a reversal of the deafness phenotype, raising hopes for future gene therapy trials in DFNB9 patients.


Assuntos
Surdez/terapia , Dependovirus/genética , Terapia Genética , Proteínas de Membrana/genética , Animais , Surdez/genética , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
Proc Natl Acad Sci U S A ; 114(8): 2054-2059, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28179572

RESUMO

The remarkable hearing capacities of mammals arise from various evolutionary innovations. These include the cochlear outer hair cells and their singular feature, somatic electromotility, i.e., the ability of their cylindrical cell body to shorten and elongate upon cell depolarization and hyperpolarization, respectively. To shed light on the processes underlying the emergence of electromotility, we focused on the ßV giant spectrin, a major component of the outer hair cells' cortical cytoskeleton. We identified strong signatures of adaptive evolution at multiple sites along the spectrin-ßV amino acid sequence in the lineage leading to mammals, together with substantial differences in the subcellular location of this protein between the frog and the mouse inner ear hair cells. In frog hair cells, spectrin ßV was invariably detected near the apical junctional complex and above the cuticular plate, a dense F-actin meshwork located underneath the apical plasma membrane. In the mouse, the protein had a broad punctate cytoplasmic distribution in the vestibular hair cells, whereas it was detected in the entire lateral wall of cochlear outer hair cells and had an intermediary distribution (both cytoplasmic and cortical, but restricted to the cell apical region) in cochlear inner hair cells. Our results support a scenario where the singular organization of the outer hair cells' cortical cytoskeleton may have emerged from molecular networks initially involved in membrane trafficking, which were present near the apical junctional complex in the hair cells of mammalian ancestors and would have subsequently expanded to the entire lateral wall in outer hair cells.


Assuntos
Movimento Celular/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Mamíferos/fisiologia , Espectrina/genética , Actinas/metabolismo , Adaptação Biológica/genética , Animais , Aves/fisiologia , Simulação por Computador , Fenômenos Eletrofisiológicos , Células HeLa , Audição/fisiologia , Humanos , Camundongos , Mutação , Filogenia , Espectrina/metabolismo , Xenopus laevis/fisiologia
5.
Proc Natl Acad Sci U S A ; 114(36): 9695-9700, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28835534

RESUMO

Our understanding of the mechanisms underlying inherited forms of inner ear deficits has considerably improved during the past 20 y, but we are still far from curative treatments. We investigated gene replacement as a strategy for restoring inner ear functions in a mouse model of Usher syndrome type 1G, characterized by congenital profound deafness and balance disorders. These mice lack the scaffold protein sans, which is involved both in the morphogenesis of the stereociliary bundle, the sensory antenna of inner ear hair cells, and in the mechanoelectrical transduction process. We show that a single delivery of the sans cDNA by the adenoassociated virus 8 to the inner ear of newborn mutant mice reestablishes the expression and targeting of the protein to the tips of stereocilia. The therapeutic gene restores the architecture and mechanosensitivity of stereociliary bundles, improves hearing thresholds, and durably rescues these mice from the balance defects. Our results open up new perspectives for efficient gene therapy of cochlear and vestibular disorders by showing that even severe dysmorphogenesis of stereociliary bundles can be corrected.


Assuntos
Síndromes de Usher/genética , Síndromes de Usher/terapia , Animais , Animais Recém-Nascidos , DNA Complementar/administração & dosagem , DNA Complementar/genética , Dependovirus/genética , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Terapia Genética/métodos , Vetores Genéticos , Células Ciliadas Auditivas/patologia , Células Ciliadas Auditivas/fisiologia , Humanos , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Síndromes de Usher/fisiopatologia , Vestíbulo do Labirinto/patologia , Vestíbulo do Labirinto/fisiopatologia
6.
Hum Mol Genet ; 26(11): 2006-2017, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334861

RESUMO

The olfacto-genital syndrome (Kallmann syndrome) associates congenital hypogonadism due to gonadotropin-releasing hormone (GnRH) deficiency and anosmia. This is a genetically heterogeneous developmental disease with various modes of transmission, including oligogenic inheritance. Previous reports have involved defective cell signaling by semaphorin-3A in the disease pathogenesis. Here, we report that the embryonic phenotype of Plxna1-/- mutant mice lacking plexin-A1 (a major receptor of class 3 semaphorins), though not fully penetrant, resembles that of Kallmann syndrome fetuses. Pathohistological analysis indeed showed a strongly abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the hypothalamic brain region in some of the mutant mice, which resulted in reduced fertility in adult males. We thus screened 250 patients for the presence of mutations in PLXNA1, and identified different nonsynonymous mutations (p.V349L, p.V437L, p.R528W, p.H684Y, p.G720E, p.R740H, p.R813H, p.R840Q, p.A854T, p.R897H, p.L1464V, p.K1618T, p.C1744F), all at heterozygous state, in 15 patients. Most of these mutations are predicted to affect plexin-A1 stability or signaling activity based on predictive algorithms and a structural model of the protein. Moreover, in vitro experiments allowed us to show the existence of deleterious effects of eight mutations (including a transcript splicing defect), none of which are expected to result in a complete loss of protein synthesis, targeting, or signaling activity, though. Our findings indicate that signaling insufficiency through plexin-A1 can contribute to the pathogenesis of Kallmann syndrome, and further substantiate the oligogenic pattern of inheritance in this developmental disorder.


Assuntos
Síndrome de Kallmann/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Adulto , Animais , Movimento Celular , Feminino , Hormônio Liberador de Gonadotropina/deficiência , Heterozigoto , Humanos , Hipogonadismo/genética , Hipotálamo/metabolismo , Masculino , Camundongos , Mutação , Proteínas do Tecido Nervoso/fisiologia , Células Neuroendócrinas/metabolismo , Neurônios/metabolismo , Bulbo Olfatório/fisiologia , Receptores de Superfície Celular/fisiologia , Reprodução , Semaforina-3A/genética , Semaforina-3A/metabolismo , Semaforinas/metabolismo , Transdução de Sinais
7.
Am J Hum Genet ; 98(6): 1266-1270, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27259055

RESUMO

By genetic linkage analysis in a large consanguineous Iranian family with eleven individuals affected by severe to profound congenital deafness, we were able to define a 2.8 Mb critical interval (at chromosome 1p21.2-1p21.1) for an autosomal-recessive nonsyndromic deafness locus (DFNB). Whole-exome sequencing allowed us to identify a CDC14A biallelic nonsense mutation, c.1126C>T (p.Arg376(∗)), which was present in the eight clinically affected individuals still alive. Subsequent screening of 115 unrelated individuals affected by severe or profound congenital deafness of unknown genetic cause led us to identify another CDC14A biallelic nonsense mutation, c.1015C>T (p.Arg339(∗)), in an individual originating from Mauritania. CDC14A encodes a protein tyrosine phosphatase. Immunofluorescence analysis of the protein distribution in the mouse inner ear showed a strong labeling of the hair cells' kinocilia. By using a morpholino strategy to knockdown cdc14a in zebrafish larvae, we found that the length of the kinocilia was reduced in inner-ear hair cells. Therefore, deafness caused by loss-of-function mutations in CDC14A probably arises from a morphogenetic defect of the auditory sensory cells' hair bundles, whose differentiation critically depends on the proper growth of their kinocilium.


Assuntos
Cílios/patologia , Células Ciliadas Auditivas/patologia , Perda Auditiva Neurossensorial/etiologia , Mutação/genética , Monoéster Fosfórico Hidrolases/genética , Índice de Gravidade de Doença , Adulto , Idoso , Animais , Cílios/metabolismo , Feminino , Imunofluorescência , Células Ciliadas Auditivas/enzimologia , Perda Auditiva Neurossensorial/patologia , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Proteínas Tirosina Fosfatases , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
8.
Am J Hum Genet ; 92(5): 707-24, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23643381

RESUMO

Transcription factor SOX10 plays a role in the maintenance of progenitor cell multipotency, lineage specification, and cell differentiation and is a major actor in the development of the neural crest. It has been implicated in Waardenburg syndrome (WS), a rare disorder characterized by the association between pigmentation abnormalities and deafness, but SOX10 mutations cause a variable phenotype that spreads over the initial limits of the syndrome definition. On the basis of recent findings of olfactory-bulb agenesis in WS individuals, we suspected SOX10 was also involved in Kallmann syndrome (KS). KS is defined by the association between anosmia and hypogonadotropic hypogonadism due to incomplete migration of neuroendocrine gonadotropin-releasing hormone (GnRH) cells along the olfactory, vomeronasal, and terminal nerves. Mutations in any of the nine genes identified to date account for only 30% of the KS cases. KS can be either isolated or associated with a variety of other symptoms, including deafness. This study reports SOX10 loss-of-function mutations in approximately one-third of KS individuals with deafness, indicating a substantial involvement in this clinical condition. Study of SOX10-null mutant mice revealed a developmental role of SOX10 in a subpopulation of glial cells called olfactory ensheathing cells. These mice indeed showed an almost complete absence of these cells along the olfactory nerve pathway, as well as defasciculation and misrouting of the nerve fibers, impaired migration of GnRH cells, and disorganization of the olfactory nerve layer of the olfactory bulbs.


Assuntos
Surdez/genética , Predisposição Genética para Doença/genética , Síndrome de Kallmann/genética , Neuroglia/patologia , Condutos Olfatórios/patologia , Fatores de Transcrição SOXE/genética , Animais , Análise Mutacional de DNA , Surdez/patologia , Feminino , França , Galactosídeos , Células HeLa , Humanos , Indóis , Síndrome de Kallmann/patologia , Masculino , Camundongos , Mutação/genética , Plasmídeos/genética
9.
FASEB J ; 28(8): 3734-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24830383

RESUMO

Various missense mutations in the gene coding for prokineticin receptor 2 (PROKR2), a G-protein-coupled receptor, have been identified in patients with Kallmann syndrome. However, the functional consequences of these mutations on the different signaling pathways of this receptor have not been studied. We first showed that the wild-type PROKR2 can activate different G-protein subtypes (Gq, Gs, and Gi/o) and recruit ß-arrestins in transfected HEK-293 cells. We then examined, for each of these signaling pathways, the effects of 9 mutations that did not significantly impair cell surface targeting or ligand binding of the receptor. Four mutant receptors showing defective Gq signaling (R85C, R85H, R164Q, and V331M) could still recruit ß-arrestins on ligand activation, which may cause biased signaling in vivo. Conversely, the R80C receptor could activate the 3 types of G proteins but could not recruit ß-arrestins. Finally, the R268C receptor could recruit ß-arrestins and activate the Gq and Gs signaling pathways but could not activate the Gi/o signaling pathway. Our results validate the concept that mutations in the genes encoding membrane receptors can bias downstream signaling in various ways, possibly leading to pathogenic and, perhaps in some cases, protective (e.g., R268C) effects.


Assuntos
Arrestinas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Síndrome de Kallmann/genética , Mutação de Sentido Incorreto , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Peptídeos/fisiologia , Transdução de Sinais/fisiologia , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Hormônios Gastrointestinais/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Neuropeptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Transporte Proteico , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/genética , Transfecção , beta-Arrestinas
10.
PLoS Genet ; 8(8): e1002896, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22927827

RESUMO

Kallmann syndrome (KS) associates congenital hypogonadism due to gonadotropin-releasing hormone (GnRH) deficiency and anosmia. The genetics of KS involves various modes of transmission, including oligogenic inheritance. Here, we report that Nrp1(sema/sema) mutant mice that lack a functional semaphorin-binding domain in neuropilin-1, an obligatory coreceptor of semaphorin-3A, have a KS-like phenotype. Pathohistological analysis of these mice indeed showed abnormal development of the peripheral olfactory system and defective embryonic migration of the neuroendocrine GnRH cells to the basal forebrain, which results in increased mortality of newborn mice and reduced fertility in adults. We thus screened 386 KS patients for the presence of mutations in SEMA3A (by Sanger sequencing of all 17 coding exons and flanking splice sites) and identified nonsynonymous mutations in 24 patients, specifically, a frameshifting small deletion (D538fsX31) and seven different missense mutations (R66W, N153S, I400V, V435I, T688A, R730Q, R733H). All the mutations were found in heterozygous state. Seven mutations resulted in impaired secretion of semaphorin-3A by transfected COS-7 cells (D538fsX31, R66W, V435I) or reduced signaling activity of the secreted protein in the GN11 cell line derived from embryonic GnRH cells (N153S, I400V, T688A, R733H), which strongly suggests that these mutations have a pathogenic effect. Notably, mutations in other KS genes had already been identified, in heterozygous state, in five of these patients. Our findings indicate that semaphorin-3A signaling insufficiency contributes to the pathogenesis of KS and further substantiate the oligogenic pattern of inheritance in this developmental disorder.


Assuntos
Axônios/metabolismo , Síndrome de Kallmann/genética , Mutação , Neuropilina-1/metabolismo , Semaforina-3A/genética , Animais , Modelos Animais de Doenças , Embrião de Mamíferos/metabolismo , Feminino , Feto/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Neuropilina-1/genética , Nariz/inervação , Semaforina-3A/química , Semaforina-3A/metabolismo
11.
Nature ; 456(7219): 255-8, 2008 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-18849963

RESUMO

Although the cochlea is an amplifier and a remarkably sensitive and finely tuned detector of sounds, it also produces conspicuous mechanical and electrical waveform distortions. These distortions reflect nonlinear mechanical interactions within the cochlea. By allowing one tone to suppress another (masking effect), they contribute to speech intelligibility. Tones can also combine to produce sounds with frequencies not present in the acoustic stimulus. These sounds compose the otoacoustic emissions that are extensively used to screen hearing in newborns. Because both cochlear amplification and distortion originate from the outer hair cells-one of the two types of sensory receptor cells-it has been speculated that they stem from a common mechanism. Here we show that the nonlinearity underlying cochlear waveform distortions relies on the presence of stereocilin, a protein defective in a recessive form of human deafness. Stereocilin was detected in association with horizontal top connectors, lateral links that join adjacent stereocilia within the outer hair cell's hair bundle. These links were absent in stereocilin-null mutant mice, which became progressively deaf. At the onset of hearing, however, their cochlear sensitivity and frequency tuning were almost normal, although masking was much reduced and both acoustic and electrical waveform distortions were completely lacking. From this unique functional situation, we conclude that the main source of cochlear waveform distortions is a deflection-dependent hair bundle stiffness resulting from constraints imposed by the horizontal top connectors, and not from the intrinsic nonlinear behaviour of the mechanoelectrical transducer channel.


Assuntos
Cóclea/fisiologia , Células Ciliadas Auditivas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Estimulação Acústica , Animais , Feminino , Regulação da Expressão Gênica , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/ultraestrutura , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Knockout
12.
Proc Natl Acad Sci U S A ; 108(14): 5825-30, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21436032

RESUMO

The mechanotransducer channels of auditory hair cells are gated by tip-links, oblique filaments that interconnect the stereocilia of the hair bundle. Tip-links stretch from the tips of stereocilia in the short and middle rows to the sides of neighboring, taller stereocilia. They are made of cadherin-23 and protocadherin-15, products of the Usher syndrome type 1 genes USH1D and USH1F, respectively. In this study we address the role of sans, a putative scaffold protein and product of the USH1G gene. In Ush1g(-/-) mice, the cohesion of stereocilia is disrupted, and both the amplitude and the sensitivity of the transduction currents are reduced. In Ush1g(fl/fl)Myo15-cre(+/-) mice, the loss of sans occurs postnatally and the stereocilia remain cohesive. In these mice, there is a decrease in the amplitude of the total transducer current with no loss in sensitivity, and the tips of the stereocilia in the short and middle rows lose their prolate shape, features that can be attributed to the loss of tip-links. Furthermore, stereocilia from these rows undergo a dramatic reduction in length, suggesting that the mechanotransduction machinery has a positive effect on F-actin polymerization. Sans interacts with the cytoplasmic domains of cadherin-23 and protocadherin-15 in vitro and is absent from the hair bundle in mice defective for either of the two cadherins. Because sans localizes mainly to the tips of short- and middle-row stereocilia in vivo, we conclude that it belongs to a molecular complex at the lower end of the tip-link and plays a critical role in the maintenance of this link.


Assuntos
Actinas/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Proteínas Relacionadas a Caderinas , Caderinas/metabolismo , Cílios/metabolismo , Eletrofisiologia , Imunofluorescência , Vetores Genéticos/genética , Células Ciliadas Auditivas/ultraestrutura , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Proteínas do Tecido Nervoso/genética , Polimerização , Precursores de Proteínas/metabolismo , Transdução de Sinais/genética
13.
Development ; 137(8): 1373-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20332152

RESUMO

Epithelial cells acquire diverse shapes relating to their different functions. This is particularly relevant for the cochlear outer hair cells (OHCs), whose apical and basolateral shapes accommodate the functioning of these cells as mechano-electrical and electromechanical transducers, respectively. We uncovered a circumferential shape transition of the apical junctional complex (AJC) of OHCs, which occurs during the early postnatal period in the mouse, prior to hearing onset. Geometric analysis of the OHC apical circumference using immunostaining of the AJC protein ZO1 and Fourier-interpolated contour detection characterizes this transition as a switch from a rounded-hexagon to a non-convex circumference delineating two lateral lobes at the neural side of the cell, with a negative curvature in between. This shape tightly correlates with the 'V'-configuration of the OHC hair bundle, the apical mechanosensitive organelle that converts sound-evoked vibrations into variations in cell membrane potential. The OHC apical circumference remodeling failed or was incomplete in all the mouse mutants affected in hair bundle morphogenesis that we tested. During the normal shape transition, myosin VIIa and myosin II (A and B isoforms) displayed polarized redistributions into and out of the developing lobes, respectively, while Shroom2 and F-actin transiently accumulated in the lobes. Defects in these redistributions were observed in the mutants, paralleling their apical circumference abnormalities. Our results point to a pivotal role for actomyosin cytoskeleton tensions in the reshaping of the OHC apical circumference. We propose that this remodeling contributes to optimize the mechanical coupling between the basal and apical poles of mature OHCs.


Assuntos
Cóclea/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Animais , Cílios/fisiologia , Cílios/ultraestrutura , Cóclea/anatomia & histologia , Cóclea/inervação , Cóclea/ultraestrutura , Orelha Interna/citologia , Cabras , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas Externas/ultraestrutura , Camundongos , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Neurônios/citologia , Neurônios/fisiologia , Órgão Espiral/fisiologia , Órgão Espiral/ultraestrutura
14.
Nat Genet ; 33(4): 463-5, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12627230

RESUMO

We took advantage of overlapping interstitial deletions at chromosome 8p11-p12 in two individuals with contiguous gene syndromes and defined an interval of roughly 540 kb associated with a dominant form of Kallmann syndrome, KAL2. We establish here that loss-of-function mutations in FGFR1 underlie KAL2 whereas a gain-of-function mutation in FGFR1 has been shown to cause a form of craniosynostosis. Moreover, we suggest that the KAL1 gene product, the extracellular matrix protein anosmin-1, is involved in FGF signaling and propose that the gender difference in anosmin-1 dosage (because KAL1 partially escapes X inactivation) explains the higher prevalence of the disease in males.


Assuntos
Proteínas da Matriz Extracelular , Síndrome de Kallmann/genética , Mutação , Receptores Proteína Tirosina Quinases/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética , Moléculas de Adesão Celular/metabolismo , Deleção Cromossômica , Cromossomos Humanos Par 8 , Cromossomos Humanos X , Éxons , Matriz Extracelular/metabolismo , Saúde da Família , Feminino , Genes Dominantes , Humanos , Íntrons , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Linhagem , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Fatores Sexuais , Transdução de Sinais
15.
Hum Mol Genet ; 19(18): 3557-65, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20639393

RESUMO

Cadherin-23 is a component of early transient lateral links of the auditory sensory cells' hair bundle, the mechanoreceptive structure to sound. This protein also makes up the upper part of the tip links that control gating of the mechanoelectrical transduction channels. We addressed the issue of the molecular complex that anchors these links to the hair bundle F-actin core. By using surface plasmon resonance assays, we show that the cytoplasmic regions of the two cadherin-23 isoforms that do or do not contain the exon68-encoded peptide directly interact with harmonin, a submembrane PDZ (post-synaptic density, disc large, zonula occludens) domain-containing protein, with unusually high affinity. This interaction involves the harmonin Nter-PDZ1 supramodule, but not the C-terminal PDZ-binding motif of cadherin-23. We establish that cadherin-23 directly binds to the tail of myosin VIIa. Moreover, cadherin-23, harmonin and myosin VIIa can form a ternary complex, which suggests that myosin VIIa applies tension forces on hair bundle links. We also show that the cadherin-23 cytoplasmic region, harmonin and myosin VIIa interact with phospholipids on synthetic liposomes. Harmonin and the cytoplasmic region of cadherin-23, both independently and as a binary complex, can bind specifically to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), which may account for the role of this phospholipid in the adaptation of mechanoelectrical transduction in the hair bundle. The distributions of cadherin-23, harmonin, myosin VIIa and PI(4,5)P(2) in the growing and mature auditory hair bundles as well as the abnormal locations of harmonin and myosin VIIa in cadherin-23 null mutant mice strongly support the functional relevance of these interactions.


Assuntos
Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Miosinas/metabolismo , Fosfolipídeos/metabolismo , Síndromes de Usher/metabolismo , Animais , Caderinas/química , Caderinas/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Linhagem Celular , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Feminino , Células Ciliadas Auditivas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Miosina VIIa , Miosinas/química , Miosinas/genética , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Síndromes de Usher/genética
16.
Hum Mol Genet ; 18(1): 75-81, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18826963

RESUMO

Kallmann syndrome (KS) combines hypogonadism due to gonadotropin-releasing hormone deficiency, and anosmia or hyposmia, related to defective olfactory bulb morphogenesis. In a large series of KS patients, ten different missense mutations (p.R85C, p.R85H, p.R164Q, p.L173R, p.W178S, p.Q210R, p.R268C, p.P290S, p.M323I, p.V331M) have been identified in the gene encoding the G protein-coupled receptor prokineticin receptor-2 (PROKR2), most often in the heterozygous state. Many of these mutations were, however, also found in clinically unaffected individuals, thus raising the question of their actual implication in the KS phenotype. We reproduced each of the ten mutations in a recombinant murine Prokr2, and tested their effects on the signalling activity in transfected HEK-293 cells, by measuring intracellular calcium release upon ligand-activation of the receptor. We found that all mutated receptors except one (M323I) had decreased signalling activities. These could be explained by different defective mechanisms. Three mutations (L173R, W178S, P290S) impaired cell surface-targeting of the receptor. One mutation (Q210R) abolished ligand-binding. Finally, five mutations (R85C, R85H, R164Q, R268C, V331M) presumably impaired G protein-coupling of the receptor. In addition, when wild-type and mutant receptors were coexpressed in HEK-293 cells, none of the mutant receptors that were retained within the cells did affect cell surface-targeting of the wild-type receptor, and none of the mutant receptors properly addressed at the plasma membrane did affect wild-type receptor signalling activity. This argues against a dominant negative effect of the mutations in vivo.


Assuntos
Hormônios Gastrointestinais/genética , Síndrome de Kallmann/genética , Mutação de Sentido Incorreto , Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Linhagem Celular , Hormônios Gastrointestinais/metabolismo , Humanos , Síndrome de Kallmann/metabolismo , Camundongos , Modelos Moleculares , Neuropeptídeos/metabolismo , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores de Peptídeos/química
17.
Neuron ; 109(16): 2604-2615.e9, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34242565

RESUMO

Nicotine stimulates dopamine (DA) neurons of the ventral tegmental area (VTA) to establish and maintain reinforcement. Nicotine also induces anxiety through an as yet unknown circuitry. We found that nicotine injection drives opposite functional responses of two distinct populations of VTA DA neurons with anatomically segregated projections: it activates neurons that project to the nucleus accumbens (NAc), whereas it inhibits neurons that project to the amygdala nuclei (Amg). We further show that nicotine mediates anxiety-like behavior by acting on ß2-subunit-containing nicotinic acetylcholine receptors of the VTA. Finally, using optogenetics, we bidirectionally manipulate the VTA-NAc and VTA-Amg pathways to dissociate their contributions to anxiety-like behavior. We show that inhibition of VTA-Amg DA neurons mediates anxiety-like behavior, while their activation prevents the anxiogenic effects of nicotine. These distinct subpopulations of VTA DA neurons with opposite responses to nicotine may differentially drive the anxiogenic and the reinforcing effects of nicotine.


Assuntos
Ansiedade/tratamento farmacológico , Vias Neurais/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/induzido quimicamente , Ansiedade/fisiopatologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/fisiologia , Masculino , Camundongos , Vias Neurais/fisiologia , Nicotina/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Reforço Psicológico , Área Tegmentar Ventral/fisiologia
18.
Sci Rep ; 10(1): 16430, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009420

RESUMO

The hair bundle of cochlear hair cells is the site of auditory mechanoelectrical transduction. It is formed by three rows of stiff microvilli-like protrusions of graduated heights, the short, middle-sized, and tall stereocilia. In developing and mature sensory hair cells, stereocilia are connected to each other by various types of fibrous links. Two unconventional cadherins, protocadherin-15 (PCDH15) and cadherin-23 (CDH23), form the tip-links, whose tension gates the hair cell mechanoelectrical transduction channels. These proteins also form transient lateral links connecting neighboring stereocilia during hair bundle morphogenesis. The proteins involved in anchoring these diverse links to the stereocilia dense actin cytoskeleton remain largely unknown. We show that the long isoform of whirlin (L-whirlin), a PDZ domain-containing submembrane scaffold protein, is present at the tips of the tall stereocilia in mature hair cells, together with PCDH15 isoforms CD1 and CD2; L-whirlin localization to the ankle-link region in developing hair bundles moreover depends on the presence of PCDH15-CD1 also localizing there. We further demonstrate that L-whirlin binds to PCDH15 and CDH23 with moderate-to-high affinities in vitro. From these results, we suggest that L-whirlin is part of the molecular complexes bridging PCDH15-, and possibly CDH23-containing lateral links to the cytoskeleton in immature and mature stereocilia.


Assuntos
Caderinas/metabolismo , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas de Membrana/metabolismo , Precursores de Proteínas/metabolismo , Animais , Proteínas Relacionadas a Caderinas , Diferenciação Celular/fisiologia , Feminino , Masculino , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura/métodos , Isoformas de Proteínas/metabolismo , Estereocílios/metabolismo
19.
Pflugers Arch ; 459(1): 115-30, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19756723

RESUMO

We assessed the involvement of harmonin-b, a submembranous protein containing PDZ domains, in the mechanoelectrical transduction machinery of inner ear hair cells. Harmonin-b is located in the region of the upper insertion point of the tip link that joins adjacent stereocilia from different rows and that is believed to gate transducer channel(s) located in the region of the tip link's lower insertion point. In Ush1c (dfcr-2J/dfcr-2J) mutant mice defective for harmonin-b, step deflections of the hair bundle evoked transduction currents with altered speed and extent of adaptation. In utricular hair cells, hair bundle morphology and maximal transduction currents were similar to those observed in wild-type mice, but adaptation was faster and more complete. Cochlear outer hair cells displayed reduced maximal transduction currents, which may be the consequence of moderate structural anomalies of their hair bundles. Their adaptation was slower and displayed a variable extent. The latter was positively correlated with the magnitude of the maximal transduction current, but the cells that showed the largest currents could be either hyperadaptive or hypoadaptive. To interpret our observations, we used a theoretical description of mechanoelectrical transduction based on the gating spring theory and a motor model of adaptation. Simulations could account for the characteristics of transduction currents in wild-type and mutant hair cells, both vestibular and cochlear. They led us to conclude that harmonin-b operates as an intracellular link that limits adaptation and engages adaptation motors, a dual role consistent with the scaffolding property of the protein and its binding to both actin filaments and the tip link component cadherin-23.


Assuntos
Adaptação Fisiológica , Proteínas de Transporte/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Mecanotransdução Celular/fisiologia , Potenciais de Ação/fisiologia , Animais , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Imunofluorescência , Camundongos , Camundongos Mutantes , Microscopia Eletrônica de Varredura , Técnicas de Patch-Clamp
20.
PLoS Genet ; 2(10): e175, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17054399

RESUMO

Kallmann syndrome combines anosmia, related to defective olfactory bulb morphogenesis, and hypogonadism due to gonadotropin-releasing hormone deficiency. Loss-of-function mutations in KAL1 and FGFR1 underlie the X chromosome-linked form and an autosomal dominant form of the disease, respectively. Mutations in these genes, however, only account for approximately 20% of all Kallmann syndrome cases. In a cohort of 192 patients we took a candidate gene strategy and identified ten and four different point mutations in the genes encoding the G protein-coupled prokineticin receptor-2 (PROKR2) and one of its ligands, prokineticin-2 (PROK2), respectively. The mutations in PROK2 were detected in the heterozygous state, whereas PROKR2 mutations were found in the heterozygous, homozygous, or compound heterozygous state. In addition, one of the patients heterozygous for a PROKR2 mutation was also carrying a missense mutation in KAL1, thus indicating a possible digenic inheritance of the disease in this individual. These findings reveal that insufficient prokineticin-signaling through PROKR2 leads to abnormal development of the olfactory system and reproductive axis in man. They also shed new light on the complex genetic transmission of Kallmann syndrome.


Assuntos
Hormônios Gastrointestinais/genética , Síndrome de Kallmann/genética , Mutação/genética , Neuropeptídeos/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Segregação de Cromossomos/genética , Cromossomos Humanos/genética , Estudos de Coortes , Éxons/genética , Feminino , Humanos , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA