Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(9): e1012560, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39283899

RESUMO

The interaction between bacteria and the intestinal mucus is crucial during the early pathogenesis of many enteric diseases in mammals. A critical step in this process employed by both commensal and pathogenic bacteria focuses on the breakdown of the protective layer presented by the intestinal mucus by mucolytic enzymes. C. perfringens type G, the causative agent of necrotic enteritis in broilers, produces two glycosyl hydrolase family 18 chitinases, ChiA and ChiB, which display distinct substrate preferences. Whereas ChiB preferentially processes linear substrates such as chitin, ChiA prefers larger and more branched substrates, such as carbohydrates presented by the chicken intestinal mucus. Here, we show via crystal structures of ChiA and ChiB in the apo and ligand-bound forms that the two enzymes display structural features that explain their substrate preferences providing a structural blueprint for further interrogation of their function and inhibition. This research focusses on the roles of ChiA and ChiB in bacterial proliferation and mucosal attachment, two processes leading to colonization and invasion of the gut. ChiA and ChiB, either supplemented or produced by the bacteria, led to a significant increase in C. perfringens growth. In addition to nutrient acquisition, the importance of chitinases in bacterial attachment to the mucus layer was shown using an in vitro binding assay of C. perfringens to chicken intestinal mucus. Both an in vivo colonization trial and a necrotic enteritis trial were conducted, demonstrating that a ChiA chitinase mutant strain was less capable to colonize the intestine and was hampered in its disease-causing ability as compared to the wild-type strain. Our findings reveal that the pathogen-specific chitinases produced by C. perfringens type G strains play a fundamental role during colonization, suggesting their potential as vaccine targets.

2.
Vet Microbiol ; 266: 109371, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35176607

RESUMO

Necrotic enteritis, caused by NetB producing Clostridium perfringens type G strains, is a globally important poultry disease. An initial step in the pathogenesis of necrotic enteritis is the colonization and degradation of the intestinal mucus layer, a process in which C. perfringens sialidases - such as NanI sialidase - may play an important role. Sialidases cleave terminal sialic acid from complex carbohydrates on glycoconjugates, such as mucins. This study shows that NE-associated C. perfringens strain CP56 is able to use sialic acid (Neu5Ac) as a carbon source for bacterial growth. It is shown that supplementation of Neu5Ac in the growth medium does not only induce the production of extracellular sialidases of strain CP56, but also increases the production of both alpha toxin and NetB toxin. Moreover, it was found that pre-treating avian hepatocellular carcinoma cells (LMH cells) with the recombinant NanI sialidase increases the adherence of C. perfringens type G strain CP56 to these cells. As such, the data suggest an important role for sialidases in the pathogenesis of the disease.


Assuntos
Infecções por Clostridium , Clostridium perfringens , Animais , Infecções por Clostridium/veterinária , Clostridium perfringens/enzimologia , Clostridium perfringens/patogenicidade , Enterite/veterinária , Técnicas In Vitro , Intestinos/microbiologia , Mucinas/metabolismo , Neuraminidase/metabolismo
3.
FEMS Microbiol Lett ; 368(8)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-30915459

RESUMO

16S rRNA gene amplicon sequencing is a state of the art technology to analyze bacterial communities via microbiome profiling. Choosing an appropriate DNA extraction protocol is crucial for characterizing the microbial community and can be challenging, especially when preliminary knowledge about the sample matrix is scarce. The aim of the present study was to evaluate seven commercial DNA extraction kits suitable for 16S rRNA gene amplicon sequencing of the bacterial community of the chicken cecum, taking into account different criteria such as high technical reproducibility, high bacterial diversity and easy handling. The DNA extraction kits differed strongly with respect to extractable DNA quantity, DNA quality, technical reproducibility and bacterial diversity determined after 16S rRNA gene amplicon sequencing and subsequent bioinformatic and biostatistical data processing. While some of the DNA extraction protocols under-represented specific bacterial community members, the removal of PCR inhibitors supported technical reproducibility and subsequently enhanced the recovered bacterial diversity from the chicken cecum community. In conclusion, the removal of PCR inhibitors from the sample matrix seemed to be one of the main drivers for a consistent representation of the bacterial community even of low abundant taxa in chicken cecum samples.

4.
Front Cell Infect Microbiol ; 11: 645248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996628

RESUMO

Extracellular matrix (ECM) degrading enzymes produced by Clostridium perfringens may play an important role during the initial phases of avian necrotic enteritis by facilitating toxin entry in the intestinal mucosa and destruction of the tissue. C. perfringens is known to produce several ECM-degrading proteases, such as kappa toxin, an extracellular collagenase that is encoded by the colA gene. In this study, the colA gene sequence of a collection of 48 C. perfringens strains, including pathogenic (i.e. toxinotype G) and commensal (i.e. toxinotype A) chicken derived strains and strains originating from other host species, was analyzed. Although the colA gene showed a high level of conservation (>96% nucleotide sequence identity), several gene variants carrying different nonsense mutations in the colA gene were identified, leading to the definition of four truncated collagenase variant types (I-IV). Collagenase variant types I, III and IV have a (nearly) complete collagenase unit but lack parts of the C-terminal recruitment domains, whereas collagenase variant types II misses the N-terminal part of collagenase unit. Gene fragments encoding a truncated collagenase were mainly linked with necrotic enteritis associated C. perfringens type G strains with collagenase variant types I and II being the most prevalent types. Gelatin zymography revealed that both recombinant full-length and variant type I collagenase have active auto-cleavage products. Moreover, both recombinant fragments were capable of degrading type I as well as type IV collagen, although variant type I collagenase showed a higher relative activity against collagen type IV as compared to full-length collagenase. Consequently, these smaller truncated collagenases might be able to break down collagen type IV in the epithelial basement membrane of the intestinal villi and so contribute to the initiation of the pathological process leading to necrotic enteritis.


Assuntos
Infecções por Clostridium , Enterite , Doenças das Aves Domésticas , Animais , Galinhas , Clostridium perfringens , Colagenases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA