Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(50)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37666238

RESUMO

We investigated the structural evolution of electrochemically fabricated Pd nanowiresin situby means of grazing-incidence transmission small- and wide-angle x-ray scattering (GTSAXS and GTWAXS), x-ray fluorescence (XRF) and two-dimensional surface optical reflectance (2D-SOR). This shows how electrodeposition and the hydrogen evolution reaction (HER) compete and interact during Pd electrodepositon. During the bottom-up growth of the nanowires, we show thatß-phase Pd hydride is formed. Suspending the electrodeposition then leads to a phase transition fromß-phase Pd hydride toα-phase Pd. Additionally, we find that grain coalescence later hinders the incorporation of hydrogen in the Pd unit cell. GTSAXS and 2D-SOR provide complementary information on the volume fraction of the pores occupied by Pd, while XRF was used to monitor the amount of Pd electrodeposited.

2.
Phys Chem Chem Phys ; 21(17): 8654-8662, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30816395

RESUMO

In situ electrochemical surface X-ray diffraction was employed to investigate the atomic scale structure of the electrochemical double layer and the relaxation at the Pt(111) electrode surface in non-aqueous and aqueous acetonitrile electrolytes under potential control. The X-ray measurements provide insight into the potential-dependence of the interface structure by combining potentiodynamic measurements (X-ray voltammetry) with potentiostatic measurements (crystal truncation rod data) to probe both the metal and electrolyte sides of the interface. The crystal truncation rod measurements are consistent with the potential dependent reorientation of acetonitrile in the absence of water and a parallel arrangement in the presence of water. As acetonitrile concentration increases, the electron density closest to the electrode surface also increases. Finally, Pt surface relaxation in a range of aqueous and non-aqueous solvents is discussed in general with regards to the structure of the electrochemical double layer.

3.
J Appl Crystallogr ; 56(Pt 1): 312-321, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36777142

RESUMO

This work introduces the high-energy surface X-ray diffraction analysis toolkit (HAT), an open-source cross-platform software package written in Python to allow the extraction and processing of high-energy surface X-ray diffraction (HESXRD) data sets. Thousands of large-area detector images are collected in a single HESXRD scan, corresponding to billions of pixels and hence reciprocal space positions. HAT is an optimized reciprocal space binner that implements a graphical user interface to allow the easy and interactive exploration of HESXRD data sets. Regions of reciprocal space can be selected with movable and resizable masks in multiple views and are projected onto different axes to allow the creation of reciprocal space maps and the extraction of crystal truncation rods. Current and future versions of HAT can be downloaded and used free of charge.

4.
Nanoscale Adv ; 4(11): 2452-2467, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36134135

RESUMO

A high-throughput method for the fabrication of ordered arrays of Au nanoparticles is presented. It is based on pulsed electrodeposition into porous anodic alumina templates. In contrast to many synthesis routes, it is cyanide-free, prior separation of the alumina template from the aluminium substrate is not required, and the use of contaminating surfactants/capping agents often found in colloidal synthesis is avoided. The aspect ratio of the nanoparticles can also be tuned by selecting an appropriate electrodeposition time. We show how to fabricate arrays of nanoparticles, both with branched bases and with hemispherical bases. Furthermore, we compare the different morphologies produced with electron microscopies and grazing-incidence synchrotron X-ray diffraction. We find the nanoparticles are polycrystalline in nature and are compressively strained perpendicular to the direction of growth, and expansively strained along the direction of growth. We discuss how this can produce dislocations and twinning defects that could be beneficial for catalysis.

5.
J Appl Crystallogr ; 54(Pt 4): 1140-1152, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34429722

RESUMO

X-ray diffractometers primarily designed for surface X-ray diffraction are often used to measure the diffraction from powders, textured materials and fiber-texture samples in 2θ scans. Unlike in high-energy powder diffraction, only a fraction of the powder rings is typically measured, and the data consist of many detector images across the 2θ range. Such diffractometers typically scan in directions not possible on a conventional laboratory diffractometer, which gives enhanced control of the scattering vector relative to the sample orientation. There are, however, very few examples where the measured intensity is directly used, such as for profile/Rietveld refinement, as is common with other powder diffraction data. Although the underlying physics is known, converting the data is time consuming and the appropriate corrections are dispersed across several publications, often not with powder diffraction in mind. This paper presents the angle calculations and correction factors required to calculate meaningful intensities for 2θ scans with a (2 + 3)-type diffractometer and an area detector. Some of the limitations with respect to texture, refraction and instrumental resolution are also discussed, as is the kind of information that one can hope to obtain.

6.
ACS Appl Mater Interfaces ; 13(16): 19530-19540, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870682

RESUMO

We have developed a microscope with a spatial resolution of 5 µm, which can be used to image the two-dimensional surface optical reflectance (2D-SOR) of polycrystalline samples in operando conditions. Within the field of surface science, operando tools that give information about the surface structure or chemistry of a sample under realistic experimental conditions have proven to be very valuable to understand the intrinsic reaction mechanisms in thermal catalysis, electrocatalysis, and corrosion science. To study heterogeneous surfaces in situ, the experimental technique must both have spatial resolution and be able to probe through gas or electrolyte. Traditional electron-based surface science techniques are difficult to use under high gas pressure conditions or in an electrolyte due to the short mean free path of electrons. Since it uses visible light, SOR can easily be used under high gas pressure conditions and in the presence of an electrolyte. In this work, we use SOR in combination with a light microscope to gain information about the surface under realistic experimental conditions. We demonstrate this by studying the different grains of three polycrystalline samples: Pd during CO oxidation, Au in electrocatalysis, and duplex stainless steel in corrosion. Optical light-based techniques such as SOR could prove to be a good alternative or addition to more complicated techniques in improving our understanding of complex polycrystalline surfaces with operando measurements.

7.
Nanoscale Adv ; 1(12): 4764-4771, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133116

RESUMO

Using a micro-focused high-energy X-ray beam, we have performed in situ time-resolved depth profiling during the electrochemical deposition of Sn into an ordered porous anodic alumina template. Combined with micro-diffraction we are able to follow the variation of the structure at the atomic scale as a function of depth and time. We show that Sn initially deposits at the bottom of the pores, and forms metallic nanopillars with a preferred [100] orientation and a relatively low mosaicity. The lattice strain is found to differ from previous ex situ measurements where the Sn had been removed from the porous support. The dendritic nature of the pore bottom affects the Sn growth mode and results in a variation of Sn grain size, strain and mosaicity. Such atomic scale information of nano-templated materials during electrodeposition may improve the future fabrication of devices.

8.
RSC Adv ; 8(34): 18980-18991, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35539633

RESUMO

Self-ordered porous anodic alumina (PAA) films are studied extensively due to a large number of possible applications in nanotechnology and low cost of production. Whereas empirical relationships between growth conditions and produced oxides have been established, fundamental aspects regarding pore formation and self-organization are still under debate. We present in situ structural studies of PAA films using grazing-incidence transmission small-angle X-ray scattering. We have considered the two most used recipes where the pores self-organize: 0.3 M H2SO4 at 25 V and 0.3 M C2H2O4 at 40 V. During anodization we have followed the evolution of the structural parameters: average interpore distance, length of ordered pores domains, and thickness of the porous oxide layer. Compared to the extensively used ex situ investigations, our approach gives an unprecedented temporal accuracy in determination of the parameters. By using of Al(100), Al(110) and Al(111) surfaces, the influence of surface orientation on the structural evolution was studied, and no significant differences in the interpore distance and domain length could be observed. However, the rate of oxide growth in 0.3 M C2H2O4 at 40 V was significantly influenced by the surface orientation, where the slowest growth occurs for Al(111). In 0.3 M H2SO4 at 25 V, the growth rates were higher, but the influence of surface orientation was not obvious. The structural evolution was also studied on pre-patterned aluminum surfaces. These studies show that although the initial structures of the oxides are governed by pre-patterning geometry, the final structures are dictated by the anodization conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA