Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 34(3): 394-411, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857499

RESUMO

SIGNIFICANCE STATEMENT: Cells undergoing necrosis release extracellular high mobility group box (HMGB)-1, which triggers sterile inflammation upon AKI in mice. Neither deletion of HMGB1 from tubular epithelial cells, nor HMGB1 antagonism with small molecules, affects initial ischemic tubular necrosis and immediate GFR loss upon unilateral ischemia/reperfusion injury (IRI). On the contrary, tubular cell-specific HMGB1 deficiency, and even late-onset pharmacological HMGB1 inhibition, increased functional and structural recovery from AKI, indicating that intracellular HMGB1 partially counters the effects of extracellular HMGB1. In vitro studies indicate that intracellular HMGB1 decreases resilience of tubular cells from prolonged ischemic stress, as in unilateral IRI. Intracellular HMGB1 is a potential target to enhance kidney regeneration and to improve long-term prognosis in AKI. BACKGROUND: Late diagnosis is a hurdle for treatment of AKI, but targeting AKI-CKD transition may improve outcomes. High mobility group box-1 (HMGB1) is a nuclear regulator of transcription and a driver of necroinflammation in AKI. We hypothesized that HMGB1 would also modulate AKI-CKD transition in other ways. METHODS: We conducted single-cell transcriptome analysis of human and mouse AKI and mouse in vivo and in vitro studies with tubular cell-specific depletion of Hmgb1 and HMGB1 antagonists. RESULTS: HMGB1 was ubiquitously expressed in kidney cells. Preemptive HMGB1 antagonism with glycyrrhizic acid (Gly) and ethyl pyruvate (EP) did not affect postischemic AKI but attenuated AKI-CKD transition in a model of persistent kidney hypoxia. Consistently, tubular Hmgb1 depletion in Pax8 rtTA, TetO Cre, Hmgb1fl/fl mice did not protect from AKI, but from AKI-CKD transition. In vitro studies confirmed that absence of HMGB1 or HMGB1 inhibition with Gly and EP does not affect ischemic necrosis of growth-arrested differentiated tubular cells but increased the resilience of cycling tubular cells that survived the acute injury to oxidative stress. This effect persisted when neutralizing extracellular HMGB1 with 2G7. Consistently, late-onset HMGB1 blockade with EP started after the peak of ischemic AKI in mice prevented AKI-CKD transition, even when 2G7 blocked extracellular HMGB1. CONCLUSION: Treatment of AKI could become feasible when ( 1 ) focusing on long-term outcomes of AKI; ( 2 ) targeting AKI-CKD transition with drugs initiated after the AKI peak; and ( 3 ) targeting with drugs that block HMGB1 in intracellular and extracellular compartments.


Assuntos
Injúria Renal Aguda , Proteína HMGB1 , Insuficiência Renal Crônica , Humanos , Animais , Camundongos , Rim , Regeneração , Células Epiteliais , Estresse Oxidativo , Ácido Glicirrízico
2.
Mol Med ; 24(1): 19, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-30134807

RESUMO

BACKGROUND: High mobility group box 1 (HMGB1) protein is a central endogenous inflammatory mediator contributing to the pathogenesis of several inflammatory disorders. HMGB1 interacts with toll-like receptors (TLRs) but contradictory evidence regarding its identity as a TLR2 ligand persists. The aim of this study was to investigate if highly purified HMGB1 interacts with TLR2 and if so, to determine the functional outcome. METHODS: Full length or C-terminal truncated (Δ30) HMGB1 was purified from E.coli. Binding to TLR2-Fc was investigated by direct-ELISA. For the functional studies, proteins alone or in complex with peptidoglycan (PGN) were added to human embryonic kidney (HEK) cells transfected with functional TLR2, TLR 1/2 or TLR 2/6 dimers, macrophages, whole blood or peripheral blood mononuclear cells (PBMCs). Cytokine levels were determined by ELISA. RESULTS: In vitro binding experiments revealed that Δ30 HMGB1, lacking the acidic tail domain, but not full length HMGB1 binds dose dependently to TLR2. Control experiments confirmed that the interaction was specific to TLR2 and could be inhibited by enzymatic digestion. Δ30 HMGB1 alone was unable to induce cytokine production via TLR2. However, full length HMGB1 and Δ30 HMGB1 formed complexes with PGN, a known TLR2 ligand, and synergistically potentiated the inflammatory response in PBMCs. CONCLUSIONS: We have demonstrated that TLR2 is a receptor for HMGB1 and this binding is negatively regulated by the C-terminal tail. HMGB1 did not induce functional activation of TLR2 while both full length HMGB1 and Δ30 HMGB1 potentiated the inflammatory activities of the TLR2 ligand PGN. We hypothesize that Δ30 HMGB1 generated in vivo by enzymatic cleavage could act as an enhancer of TLR2-mediated inflammatory activities.


Assuntos
Proteína HMGB1/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Ligantes , Camundongos , Domínios Proteicos
5.
Mol Med ; 20: 538-47, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25247290

RESUMO

Macrophage activation syndrome (MAS) is a potentially fatal complication of systemic inflammation. High mobility group box 1 (HMGB1) is a nuclear protein extensively leaked extracellularly during necrotic cell death or actively secreted by natural killer (NK) cells, macrophages and additional cells during infection or sterile injury. Extracellular HMGB1 orchestrates key events in inflammation as a prototypic alarmin. The redox states of its three cysteines render the molecule mutually exclusive functions: fully reduced "all-thiol HMGB1" exerts chemotactic activity; "disulfide HMGB1" has cytokine-inducing, toll-like receptor 4 (TLR4)-mediated effects­while terminally oxidized "sulfonyl HMGB1" lacks inflammatory activity. This study examines the kinetic pattern of systemic HMGB1 isoform expression during therapy in four children with severe MAS. Three of the four patients with underlying systemic rheumatic diseases were treated with biologics and two suffered from triggering herpes virus infections at the onset of MAS. All patients required intensive care unit therapy due to life-threatening illness. Tandem mass-spectrometric analysis revealed dramatically increased systemic levels of the cytokine-inducing HMGB1 isoform during early MAS. Disease control coincided with supplementary etoposide therapy initiated to boost apoptotic cell death, when systemic HMGB1 levels drastically declined and the molecule emerged mainly in its oxidized, noninflammatory isoform. Systemic interferon (IFN)-γ and ferritin peaked concomitantly with HMGB1, whereas interleukin (IL)-18 and monocyte chemotactic protein (MCP)-1 levels developed differently. In conclusion, this work provides new insights in HMGB1 biology, suggesting that the molecule is not merely a biomarker of inflammation, but most likely also contributes to the pathogenesis of MAS. These observations encourage further studies of disulfide HMGB1 antagonists to improve outcome of MAS.


Assuntos
Proteína HMGB1/sangue , Síndrome de Ativação Macrofágica/sangue , Adolescente , Biomarcadores/sangue , Criança , Pré-Escolar , Citocinas/sangue , Etoposídeo/uso terapêutico , Feminino , Ferritinas/sangue , Humanos , Síndrome de Ativação Macrofágica/tratamento farmacológico , Masculino , Isoformas de Proteínas/sangue
6.
Mol Med ; 20: 135-7, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24531895

RESUMO

High mobility group box 1 (HMGB1) is a central mediator in inflammation and immunity. Recently, it was shown that different redox states of the three cysteines of HMGB1 endow it with mutually exclusive activities, such as inducing chemotaxis or the transcription of cytokines and chemokines, via the interaction with different receptors. The different HMGB1 redox forms can be identified by mass spectrometry in body fluids of patients and may hold promise as biomarkers. We propose here a systematic nomenclature of the different redox forms of HMGB1 and related proteins, to replace the conflicting names used so far by different laboratories.


Assuntos
Cisteína/química , Proteína HMGB1/química , Proteína HMGB1/metabolismo , Terminologia como Assunto , Sítios de Ligação , Biomarcadores , Humanos , Oxirredução
7.
Mol Med ; 18: 224-30, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22076468

RESUMO

The nuclear protein high mobility group box protein 1 (HMGB1) promotes inflammation upon extracellular release. HMGB1 induces proinflammatory cytokine production in macrophages via Toll-like receptor (TLR)-4 signaling in a redox-dependent fashion. Independent of its redox state and endogenous cytokine-inducing ability, HMGB1 can form highly immunostimulatory complexes by interaction with certain proinflammatory mediators. Such complexes have the ability to enhance the induced immune response up to 100-fold, compared with induction by the ligand alone. To clarify the mechanisms for these strong synergistic effects, we studied receptor requirements. Interleukin (IL)-6 production was assessed in supernatants from cultured peritoneal macrophages from mice each deficient in one of the HMGB1 receptors (receptor for advanced glycation end products [RAGE], TLR2 or TLR4) or from wild-type controls. The cultures were stimulated with the TLR4 ligand lipopolysaccaride (LPS), the TLR2 ligand Pam3CysSerLys4 (Pam3CSK4), noninflammatory HMGB1 or each TLR ligand in complex with noninflammatory HMGB1. The activity of the HMGB1-TLR ligand complexes relied on engagement of the same receptor as for the noncomplexed TLR ligand, since HMGB1-LPS complexes used TLR4 and HMGB1-Pam3CSK4 complexes used TLR2. Deletion of any of the intracellular adaptor molecules used by TLR2 (myeloid differentiation factor-88 [MyD88], TIR domain-containing adaptor protein [TIRAP]) or TLR4 (MyD88, TIRAP, TIR domain-containing adaptor-inducing interferon-ß [TRIF], TRIF-related adaptor molecule [TRAM]) had similar effects on HMGB1 complex activation compared with noncomplexed LPS or Pam3CSK4. This result implies that the enhancing effects of HMGB1-partner molecule complexes are not regulated by the induction of additional signaling cascades. Elucidating HMGB1 receptor usage in processes where HMGB1 acts alone or in complex with other molecules is essential for the understanding of basic HMGB1 biology and for designing HMGB1-targeted therapies.


Assuntos
Citocinas/metabolismo , Proteína HMGB1/metabolismo , Animais , Células Cultivadas , Proteína HMGB1/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Ratos , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
8.
Front Immunol ; 13: 911744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874666

RESUMO

Surgery triggers a systemic inflammatory response that ultimately impacts the brain and associates with long-term cognitive impairment. Adequate regulation of this immune surge is pivotal for a successful surgical recovery. We explored the temporal immune response in a surgical cohort and its associations with neuroimmune regulatory pathways and cognition, in keeping with the growing body of evidence pointing towards the brain as a regulator of peripheral inflammation. Brain-to-immune communication acts through cellular, humoral and neural pathways. In this context, the vagal nerve and the cholinergic anti-inflammatory pathway (CAP) have been shown to modify peripheral immune cell activity in both acute and chronic inflammatory conditions. However, the relevance of neuroimmune regulatory mechanisms following a surgical trauma is not yet elucidated. Twenty-five male patients undergoing elective laparoscopic abdominal surgery were included in this observational prospective study. Serial blood samples with extensive immune characterization, assessments of heart rate variability (HRV) and cognitive tests were performed before surgery and continuing up to 6 months post-surgery. Temporal immune responses revealed biphasic reaction patterns with most pronounced changes at 5 hours after skin incision and 14 days following surgery. Estimations of cardiac vagal nerve activity through HRV recordings revealed great individual variations depending on the pre-operative HRV baseline. A principal component analysis displayed distinct differences in systemic inflammatory biomarker trajectories primarily based on pre-operative HRV, with potiential consequences for long-term surgical outcomes. In conclusion, individual pre-operative HRV generates differential response patterns that associate with distinct inflammatory trajectories following surgery. Long-term surgical outcomes need to be examined further in larger studies with mixed gender cohorts.


Assuntos
Inflamação , Nervo Vago , Frequência Cardíaca/fisiologia , Humanos , Imunidade Inata , Inflamação/metabolismo , Masculino , Estudos Prospectivos , Nervo Vago/fisiologia
9.
Biochim Biophys Acta ; 1799(1-2): 141-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20123076

RESUMO

HMGB1 is a ubiquitous nuclear protein that can be released by any damaged cell or by activated macrophages and certain other cell types. HMGB1 has been successfully therapeutically targeted in multiple preclinical models of infectious and sterile diseases including arthritis. Extracellular HMGB1 mediates inflammation via induction of cytokine and metalloproteinase production and recruitment and activation of dendritic cells needed for priming of naïve T helper type 1 lymphocytes. HMGB1 can bind endogenous molecules such as IL-1beta and nucleosomes and exogenous agents like endotoxin and microbial DNA. These complexes synergistically increase the capacity for activation of adaptive and innate immunity. HMGB1-nucleosome complexes induce autoantibody formation against double-stranded DNA and nucleosomes, which does not occur if HMGB1 is absent. These antibodies are central in the pathogenesis of systemic lupus erythematosus and patients with active disease have both increased HMGB1 and HMGB1-nucleosome levels in circulation. Furthermore, HMGB1 is strongly bipolar charged, enabling cell membrane passage and intracellular transport of complexed molecules including DNA. Rheumatoid arthritis patients have excessive extracellular HMGB1 levels in joints and serum. The HMGB1 release is caused by cytokines, activated complement and hypoxia. The most prominent HMGB1 protein and mRNA expression arthritis is present in pannus regions, where synovial tissue invades articular cartilage and bone. HMGB1 promotes the activity of proteolytic enzymes, and osteoclasts need HMGB1 for functional maturation. Neutralizing HMGB1 therapy in preclinical models of arthritis confers striking protection against structural damage. This review summarizes selected aspects of HMGB1 biology relevant for induction and propagation of some autoimmune conditions.


Assuntos
Proteína HMGB1/metabolismo , Doenças Reumáticas/etiologia , Animais , Autoanticorpos/imunologia , Espaço Extracelular/metabolismo , Humanos , Inflamação/complicações , Inflamação/patologia , Doenças Reumáticas/imunologia , Doenças Reumáticas/patologia , Doenças Reumáticas/terapia
10.
FASEB J ; 24(2): 570-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19837864

RESUMO

Idiopathic inflammatory myopathies (IIMs) are heterogeneous rheumatic disorders of unknown cause characterized by muscle weakness, inflammatory cell infiltrates, and major histocompatibility complex (MHC) class I expression on muscle fibers. The nonhistone nuclear protein alarmin high-mobility group box 1 protein (HMGB1) has been detected extranuclearly in muscle biopsies from patients with IIMs. We hypothesize that HMGB1 has a central role in the cause of muscle weakness, particularly in the early phases of IIMs. Experiments were performed on skeletal muscle fibers isolated from adult mice, which were exposed to recombinant interferon (IFN)-gamma or HMGB1. The myoplasmic free [Ca(2+)] was measured. Stimulation with IFN-gamma resulted in increased HMGB1 expression in muscle nuclei and the myoplasm. Exposure to HMGB1 induced a reversible up-regulation of MHC class I in the muscle fibers. However, HMGB1 exposure caused an irreversible decrease in Ca(2+) release from the sarcoplasmic reticulum during fatigue, induced by repeated tetanic contractions. HMGB1 and MHC class I were frequently colocalized in the myoplasm of muscle fibers in muscle biopsies from patients with early IIMs. However, HMGB1-expressing fibers outnumbered fibers expressing MHC class I. Our data indicate that HMGB1 could be an early inducer of skeletal muscle dysfunction in IIMs.


Assuntos
Proteína HMGB1/farmacologia , Fibras Musculares Esqueléticas/fisiologia , Miosite/fisiopatologia , Adulto , Animais , Cálcio/metabolismo , Dermatomiosite/fisiopatologia , Feminino , Proteína HMGB1/biossíntese , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Interferon gama/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias Musculares/metabolismo , Fadiga Muscular/fisiologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Polimiosite/fisiopatologia , Espécies Reativas de Oxigênio , Retículo Sarcoplasmático/metabolismo
11.
Arthritis Rheum ; 62(10): 2963-72, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20533288

RESUMO

OBJECTIVE: High mobility group box chromosomal protein 1 (HMGB-1) is a DNA binding nuclear protein that can be released from dying cells and activated myeloid cells. Extracellularly, HMGB-1 promotes inflammation. Clinical and experimental studies demonstrate that HMGB-1 is a pathogenic factor in chronic arthritis. Mice with combined gene deficiency for DNase II and IFNRI spontaneously develop chronic, destructive polyarthritis with many features shared with rheumatoid arthritis. DNase II is needed for macrophage degradation of engulfed DNA. The aim of this study was to evaluate a potential pathogenic role of HMGB-1 in this novel murine model. METHODS: The course of arthritis, assessed by clinical scoring and histology, was studied in DNase II(-/-) × IFNRI(-/-) mice, in comparison with heterozygous and wild-type mice. Synovial HMGB-1 expression was analyzed by immunohistochemistry. Serum levels of HMGB-1 were determined by Western immunoblotting and enzyme-linked immunosorbent assay (ELISA), and anti-HMGB-1 autoantibodies were detected by ELISA. Macrophage activation was studied by immunostaining for intracellular interleukin-1ß and HMGB-1. HMGB-1 was targeted with truncated HMGB-1-derived BoxA protein, acting as a competitive antagonist, with intraperitoneal injections every second day for 5 weeks. RESULTS: DNase II(-/-) × IFNRI(-/-) mice developed symmetric polyarthritis with strong aberrant cytosolic and extracellular HMGB-1 expression in synovial tissue, in contrast to that observed in control animals. Increased serum levels of HMGB-1 and HMGB-1 autoantibodies were recorded in DNase II(-/-) × IFNRI(-/-) mice, both prior to and during the establishment of disease. Systemic HMGB-1-specific blockade significantly ameliorated the clinical disease course, and a protective effect on joint destruction was demonstrated by histologic evaluation. CONCLUSION: HMGB-1 is involved in the pathogenesis of this spontaneous polyarthritis, and intervention with an HMGB-1 antagonist can mediate beneficial effects.


Assuntos
Artrite/imunologia , Artrite/metabolismo , Domínios HMG-Box/imunologia , Proteína HMGB1/imunologia , Proteína HMGB1/metabolismo , Animais , Artrite/prevenção & controle , Artrite Experimental/imunologia , Artrite Experimental/metabolismo , Artrite Experimental/prevenção & controle , Autoanticorpos , Endodesoxirribonucleases/deficiência , Proteína HMGB1/antagonistas & inibidores , Camundongos , Camundongos Knockout , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia
12.
Pediatr Rheumatol Online J ; 19(1): 173, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34963488

RESUMO

BACKGROUND: This study aimed to perform an immunoprofiling of systemic juvenile idiopathic arthritis (sJIA) in order to define biomarkers of clinical use as well as reveal new immune mechanisms. METHODS: Immunoprofiling of plasma samples from a clinically well-described cohort consisting of 21 sJIA patients as well as 60 age and sex matched healthy controls, was performed by a highly sensitive proteomic immunoassay. Based on the biomarkers being significantly up- or down-regulated in cross-sectional and paired analysis, related canonical pathways and cellular functions were explored by Ingenuity Pathway Analysis (IPA). RESULTS: The well-studied sJIA biomarkers, IL6, IL18 and S100A12, were confirmed to be increased during active sJIA as compared to healthy controls. IL18 was the only factor found to be increased during inactive sJIA as compared to healthy controls. Novel factors, including CASP8, CCL23, CD6, CXCL1, CXCL11, CXCL5, EIF4EBP1, KITLG, MMP1, OSM, SIRT2, SULT1A1 and TNFSF11, were found to be differentially expressed in active and/or inactive sJIA and healthy controls. No significant pathway activation could be predicted based on the limited factor input to the IPA. High Mobility Group Box 1 (HMGB1), a damage associated molecular pattern being involved in a series of inflammatory diseases, was determined to be higher in active sJIA than inactive sJIA. CONCLUSIONS: We could identify a novel set of biomarkers distinguishing active sJIA from inactive sJIA or healthy controls. Our findings enable a better understanding of the immune mechanisms active in sJIA and aid the development of future diagnostic and therapeutic strategies.


Assuntos
Artrite Juvenil/sangue , Artrite Juvenil/imunologia , Biomarcadores/sangue , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Masculino , Proteômica
13.
Pain ; 162(2): 459-470, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32796317

RESUMO

ABSTRACT: Spinal high mobility group box 1 protein (HMGB1) plays crucial roles in arthritis-induced pain; however, the involvement of peripheral HMGB1 has not been examined previously. In this study, we addressed the role of peripheral HMGB1 and explored if sex contributes differentially to nociception in arthritis. We found Hmgb1 expression to be elevated in the ankle joints of male and female mice subjected to collagen antibody-induced arthritis. Blocking the action of peripheral HMGB1, however, only reversed collagen antibody-induced arthritis-mediated hypersensitivity in males. Intra-articular injection of the toll-like receptor (TLR)4-activating, partially reduced disulfide, but not the fully reduced all-thiol, HMGB1 evoked mechanical hypersensitivity in both sexes. A sex-dependent temporal profile in expression of inflammatory factors in the ankle joint was observed in response to intra-articular injection of disulfide HMGB1, with male mice showing a delayed, yet longer-lasting increase in mRNA levels for several of the investigated factors. Intra-articular HMGB1 did not induce cellular infiltration in the ankle joint suggesting its action on tissue resident cells. To further explore possible sex differences in cellular involvement, we used the macrophage inhibitor, minocycline, and mice with specific TLR4 depletion in myeloid cells or nociceptors. We found that inhibition of resident macrophages attenuated HMGB1-induced pain-like behavior only in male mice. Interestingly, although the contribution of TLR4 on myeloid cells to nociception was minimal in females compared to males, TLR4 on nociceptors are important for HMGB1-induced pain in both sexes. Collectively, our work highlights sex- and cellular location-dependent roles of HMGB1 and TLR4 in peripheral pain mechanisms.


Assuntos
Proteína HMGB1 , Animais , Feminino , Proteína HMGB1/genética , Macrófagos , Masculino , Camundongos , Nociceptividade , Dor/etiologia , Receptor 4 Toll-Like/genética
14.
Mol Med ; 16(9-10): 343-51, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20386869

RESUMO

Several HMGB1-specific antagonists have provided beneficial results in multiple models of inflammatory disease-preclinical trials including arthritis. Since no HMGB1-specific targeted therapy has yet reached the clinic, we have performed in vitro studies to investigate whether any of a selection of well-established antirheumatic drugs inhibit HMGB1 release as part of its mode of action. Freshly purified peripheral blood monocytes from healthy donors were stimulated in cultures with LPS and IFNγ to cause HMGB1 and TNF release detected in ELISPOT assays. Effects on the secretion were assessed in cultures supplemented with dexamethasone, cortisone, chloroquine, gold sodium thiomalate, methotrexate, colchicine, etanercept or anakinra. Pharmacologically relevant doses of dexamethasone, gold sodium thiomalate and chloroquine inhibited the extracellular release of HMGB1 in a dose-dependent mode. Immunostaining demonstrated that dexamethasone caused intracellular HMGB1 retention. No effects on HMGB1 secretion were observed in cultures with activated monocytes by any of the other studied agents. TNF production in LPS/IFNγ-activated monocytes was readily downregulated by dexamethasone and, to some extent, by chloroquine and etanercept. We conclude that dexamethasone, gold sodium thiomalate and chloroquine share a capacity to inhibit HMGB1 release from activated monocytes.


Assuntos
Proteína HMGB1/metabolismo , Fatores Imunológicos/farmacologia , Monócitos/citologia , Monócitos/metabolismo , Animais , Células Cultivadas , Cloroquina/farmacologia , Colchicina/farmacologia , Cortisona/farmacologia , Dexametasona/farmacologia , Regulação para Baixo/efeitos dos fármacos , Tiomalato Sódico de Ouro/farmacologia , Humanos , Interleucina-1beta/antagonistas & inibidores , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Metotrexato/farmacologia , Camundongos , Monócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
15.
Front Immunol ; 11: 448262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391251

RESUMO

Extracellular HMGB1 acts as an alarmin in multiple autoimmune diseases. While its release and functions have been extensively studied, there is a substantial lack of knowledge regarding HMGB1 regulation at the site of inflammation. Herein we show that enzymes present in arthritis-affected joints process HMGB1 into smaller peptides in vitro. Gel electrophoresis, Western blotting and mass spectrometry analyses indicate cleavage sites for human neutrophil elastase, cathepsin G, and matrix metalloproteinase 3 within the HMGB1 structure. While human neutrophil elastase and matrix metalloproteinase 3 might alter the affinity of HMGB1 to its receptors by cleaving the acidic C-terminal tail, cathepsin G rapidly and completely degraded the alarmin. Contrary to a previous report we demonstrate that HMGB1 is not a substrate for dipeptidyl peptidase IV. We also provide novel information regarding the presence of these proteases in synovial fluid of juvenile idiopathic arthritis patients. Correlation analysis of protease levels and HMGB1 levels in synovial fluid samples did not, however, reveal any direct relationship between the recorded levels. This study provides knowledge of proteolytic processing of HMGB1 relevant for the regulation of HMGB1 during inflammatory disease.


Assuntos
Artrite Juvenil/imunologia , Proteína HMGB1/imunologia , Peptídeo Hidrolases/imunologia , Proteólise , Líquido Sinovial/imunologia , Adolescente , Artrite Juvenil/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino
16.
J Leukoc Biol ; 81(1): 129-36, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16980509

RESUMO

High mobility group box protein 1 (HMGB1) exerts different biological functions dependent on its cellular localization. Nuclear HMGB1 maintains chromatin architecture and is required for undisturbed transcription activity, and extracellularly released HMGB1 mediates inflammation and tissue regeneration. A present paucity of readily accessible methods to quantify released HMGB1 represents a problem concerning the exploration of HMGB1 biology. We have now developed a HMGB1-specific ELISPOT assay enabling enumeration of individual HMGB1-releasing cells. The method also allows automated, semiquantitative assessment of released HMGB1 by evaluating areas of single HMGB1 spots. Actively secreted HMGB1 as well as cells passively releasing the protein following necrotic cell death are visualized distinctly using this ELISPOT assay. Kinetics of HMGB1 secretion after different stimuli was studied using cell lines of various lineages. IFN-gamma already induced substantial HMGB1 secretion from the monocytic cell line RAW 264.7 within 24 h and even more so after 48 h. LPS only stimulated a modest HMGB1 release within 24 h, but this increased considerably by 48 h. TNF-induced HMGB1 release was unexpectedly low. Mast cells, which share the secretory, lysosomal pathway with macrophages/monocytes, did not secrete HMGB1 in response to any studied mode of activation. Most transformed cells overexpress HMGB1, but the ELISPOT assay revealed that all transformed cell lines will not actively secrete the protein. We believe the ELISPOT method provides a novel tool to study pathways promoting or inhibiting HMGB1 secretion.


Assuntos
Especificidade de Anticorpos , Ensaio de Imunoadsorção Enzimática/métodos , Proteína HMGB1/metabolismo , Animais , Apoptose , Linhagem Celular , Linhagem da Célula , Sinergismo Farmacológico , Humanos , Interferon gama/farmacologia , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Mastócitos/metabolismo , Camundongos , Transporte Proteico , Fator de Necrose Tumoral alfa/metabolismo
17.
Innate Immun ; 24(2): 131-141, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29495940

RESUMO

Hyaluronan (HA) is a large polymer and an important component of the extracellular matrix. During homeostasis, high molecular mass HA is the predominant form, but upon inflammation, degradation products of HA accumulate. These HA fragments (HA-fs) have been reported to possess pro-inflammatory activities and thus act as alarmins, notifying immune cells of danger via TLR4 and CD44. HA is found in large quantities in synovial joint fluid. In order to reveal a potential role of HA-fs in arthritis pathogenesis, the in vitro effects of HA of various molecular masses (from 1680 kDa to oligosaccharide HA) on synovial fibroblasts and chondrocytes from rheumatoid arthritis patients, and on peripheral blood mononuclear cells from healthy donors, were investigated. TLR4 and CD44 surface expression was confirmed by immunocytochemistry, and cell activation was determined based on cytokine and chemokine production. While the cell types investigated expressed TLR4 and CD44, no increased release of IL-1ß, IL-6, IL-8, IL-10, IL-12 or TNF-α was detected after HA stimulation. Similarly, HA did not enhance activation after priming cells with low doses of LPS or by forming complexes with LPS. Hence, this study does not support the common view of HA-fs being pro-inflammatory mediators and it is not likely that HA-fs generated during arthritis contribute to disease pathogenesis.


Assuntos
Alarminas/metabolismo , Artrite Reumatoide/metabolismo , Condrócitos/fisiologia , Matriz Extracelular/metabolismo , Fibroblastos/fisiologia , Ácido Hialurônico/metabolismo , Membrana Sinovial/patologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Receptor 4 Toll-Like/metabolismo
18.
Sci Transl Med ; 10(432)2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540615

RESUMO

Stroke induces a multiphasic systemic immune response, but the consequences of this response on atherosclerosis-a major source of recurrent vascular events-have not been thoroughly investigated. We show that stroke exacerbates atheroprogression via alarmin-mediated propagation of vascular inflammation. The prototypic brain-released alarmin high-mobility group box 1 protein induced monocyte and endothelial activation via the receptor for advanced glycation end products (RAGE)-signaling cascade and increased plaque load and vulnerability. Recruitment of activated monocytes via the CC-chemokine ligand 2-CC-chemokine receptor type 2 pathway was critical in stroke-induced vascular inflammation. Neutralization of circulating alarmins or knockdown of RAGE attenuated atheroprogression. Blockage of ß3-adrenoreceptors attenuated the egress of myeloid monocytes after stroke, whereas neutralization of circulating alarmins was required to reduce systemic monocyte activation and aortic invasion. Our findings identify a synergistic effect of the sympathetic stress response and alarmin-driven inflammation via RAGE as a critical mechanism of exacerbated atheroprogression after stroke.


Assuntos
Alarminas/metabolismo , Aterosclerose/metabolismo , Encéfalo/metabolismo , Animais , Aterosclerose/patologia , Encéfalo/patologia , Imunidade Inata/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
19.
Int J Rheum Dis ; 20(1): 25-32, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24702728

RESUMO

AIMS: In rheumatoid arthritis (RA), pain and inflammation are initial symptoms followed by various degrees of bone and cartilage destruction. Previously, we have shown that reversible proteasome inhibitor MG132 attenuates pain and joint inflammation in a rat model of adjuvant-arthritis. Our present study aims to study the effects of MG132 on molecular changes in the dorsal root ganglia (DRG) and in the spinal cord (SC) using the same animal model. METHODS: Arthritis was induced by heat-killed Mycobacterium butyricum in rats. The expression of substance P (SP) was analyzed by quantitative reverse transcription polymerase chain reaction and immunohistochemistry in DRG and in the SC. The nuclear factor-κB (NF-κB) DNA-binding activity in the SC was analyzed by electromobility shift assay. RESULTS: Arthritic rats treated daily with MG132 demonstrated a marked reduction of SP gene expression in the DRG and number of SP-positive cells was reduced. In the spinal cord of arthritic rats elevated SP messenger RNA levels were normalized and NF-κB-DNA-binding activity was down-regulated in arthritic rats treated with MG132. CONCLUSION: Our results indicate that proteasome inhibitor MG132 attenuates pain in adjuvant arthritis by targeting the sensory neuropeptide substance P in the peripheral and central nervous systems. These effects may be mediated through the inhibition of NF-κB activation.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Gânglios Espinais/efeitos dos fármacos , Leupeptinas/farmacologia , Dor/prevenção & controle , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Artrite Experimental/enzimologia , Artrite Experimental/genética , Artrite Experimental/microbiologia , Sítios de Ligação , DNA/metabolismo , Feminino , Gânglios Espinais/enzimologia , Mycobacterium , NF-kappa B/metabolismo , Dor/enzimologia , Dor/microbiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos Endogâmicos Lew , Medula Espinal/enzimologia , Substância P/genética , Substância P/metabolismo
20.
Antioxid Redox Signal ; 24(12): 605-19, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25532033

RESUMO

AIMS: Pathogenic effects of the endogenous inflammatory mediator high mobility group box protein 1 (HMGB1) have been described in several inflammatory diseases. Recent reports have underlined the importance of post-translational modifications (PTMs) in determination of HMGB1 function and release mechanisms. We investigated the occurrence of PTMs of HMGB1 obtained from synovial fluid (SF) of juvenile idiopathic arthritis (JIA) patients. RESULTS: Analyses of 17 JIA patients confirmed high HMGB1 levels in SF. Liquid chromatography tandem mass-spectrometry (LC-MS/MS) analyses of PTMs revealed that total HMGB1 levels were not associated with increased lactate dehydrogenase activity but strongly correlated with nuclear location sequence 2 (NLS2) hyperacetylation, indicating active release of HMGB1. The correlation between total HMGB1 levels and NLS2 hypoacetylation suggests additional, acetylation-independent release mechanisms. Monomethylation of lysine 43 (K43), a proposed neutrophil-specific PTM, was strongly associated with high HMGB1 levels, implying that neutrophils are a source of released HMGB1. Analysis of cysteine redox isoforms, fully reduced HMGB1, disulfide HMGB1, and oxidized HMGB1, revealed that HMGB1 acts as both a chemotactic and a cytokine-inducing mediator. These properties were associated with actively released HMGB1. INNOVATION: This is the first report that characterizes HMGB1-specific PTMs during a chronic inflammatory condition. CONCLUSION: HMGB1 in SF from JIA patients is actively released through both acetylation-dependent and -nondependent manners. The presence of various functional HMGB1 redox isoforms confirms the complexity of their pathogenic role during chronic inflammation. Defining HMGB1 release pathways and redox isoforms is critical for the understanding of the contribution of HMGB1 during inflammatory processes.


Assuntos
Artrite Juvenil/metabolismo , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Adolescente , Criança , Pré-Escolar , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA