Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Mol Life Sci ; 79(7): 390, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776214

RESUMO

There is a growing need to uncover biomarkers of ionizing radiation exposure that leads to a better understanding of how exposures take place, including dose type, rate, and time since exposure. As one of the first organs to be exposed to external sources of ionizing radiation, skin is uniquely positioned in terms of model systems for radiation exposure study. The simultaneous evolution of both MS-based -omics studies, as well as in vitro 3D skin models, has created the ability to develop a far more holistic understanding of how ionizing radiation affects the many interconnected biomolecular processes that occur in human skin. However, there are a limited number of studies describing the biomolecular consequences of low-dose ionizing radiation to the skin. This review will seek to explore the current state-of-the-art technology in terms of in vitro 3D skin models, as well as track the trajectory of MS-based -omics techniques and their application to ionizing radiation research, specifically, the search for biomarkers within the low-dose range.


Assuntos
Exposição à Radiação , Humanos , Modelos Biológicos , Radiação Ionizante , Pele
2.
Biomed Microdevices ; 18(5): 88, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27613401

RESUMO

This study demonstrates a rapid prototyping approach for fabricating and integrating porous hollow fibers (HFs) into microfluidic device. Integration of HF can enhance mass transfer and recapitulate tubular shapes for tissue-engineered environments. We demonstrate the integration of single or multiple HFs, which can give the users the flexibility to control the total surface area for tissue development. We also present three microfluidic designs to enable different co-culture conditions such as the ability to co-culture multiple cell types simultaneously on a flat and tubular surface, or inside the lumen of multiple HFs. Additionally, we introduce a pressurized cell seeding process that can allow the cells to uniformly adhere on the inner surface of HFs without losing their viabilities. Co-cultures of lung epithelial cells and microvascular endothelial cells were demonstrated on the different platforms for at least five days. Overall, these platforms provide new opportunities for co-culturing of multiple cell types in a single device to reconstruct native tissue micro-environment for biomedical and tissue engineering research.


Assuntos
Técnicas de Cocultura/instrumentação , Dispositivos Lab-On-A-Chip , Linhagem Celular , Humanos , Integração de Sistemas
3.
Sci Rep ; 11(1): 5287, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674653

RESUMO

The separation of biomarkers from blood is straightforward in most molecular biology laboratories. However, separation in resource-limited settings, allowing for the successful removal of biomarkers for diagnostic applications, is not always possible. The situation is further complicated by the need to separate hydrophobic signatures such as lipids from blood. Herein, we present a microfluidic device capable of centrifugal separation of serum from blood at the point of need with a system that is compatible with biomarkers that are both hydrophilic and hydrophobic. The cross-flow filtration device separates serum from blood as efficiently as traditional methods and retains amphiphilic biomarkers in serum for detection.


Assuntos
Separação Celular/métodos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Ovinos/sangue , Tensoativos/análise , Animais , Biomarcadores/sangue , Contagem de Células Sanguíneas , Soro
4.
Sci Rep ; 8(1): 436, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323189

RESUMO

Exposure to lipopolysaccharides (LPS) causes extensive neutrophilic inflammation in the airways followed by mucous cell hyperplasia (MCH) that is sustained by the anti-apoptotic protein, Bcl-2. To identify inflammatory factor(s) that are responsible for Bcl-2 expression, we established an organ culture system consisting of airway epithelial tissue from the rat nasal midseptum. The highest Muc5AC and Bcl-2 expression was observed when organ cultures were treated with brochoalveolar lavage (BAL) fluid harvested from rats 10 h post LPS instillation. Further, because BAL harvested from rats depleted of polymorphonuclear cells compared to controls showed increased Bcl-2 expression, analyses of cytokine levels in lavages identified IL-13 as an inducer of Bcl-2 expression. Ectopic IL-13 treatment of differentiated airway epithelial cells increased Bcl-2 and MUC5AC expression in the basal and apical regions of the cells, respectively. When Bcl-2 was blocked using shRNA or a small molecule inhibitor, ABT-263, mucous cell numbers were reduced due to increased apoptosis that disrupted the interaction of Bcl-2 with the pro-apoptotic protein, Bik. Furthermore, intranasal instillation of ABT-263 reduced the LPS-induced MCH in bik +/+ but not bik -/- mice, suggesting that Bik mediated apoptosis in hyperplastic mucous cells. Therefore, blocking Bcl-2 function could be useful in reducing IL-13 induced mucous hypersecretion.


Assuntos
Inflamação/metabolismo , Interleucina-13/metabolismo , Lipopolissacarídeos/efeitos adversos , Septo Nasal/citologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose , Líquido da Lavagem Broncoalveolar/imunologia , Hiperplasia , Masculino , Mucina-5AC/metabolismo , Septo Nasal/metabolismo , Septo Nasal/patologia , Técnicas de Cultura de Órgãos , Ratos
5.
RSC Adv ; 8(38): 21133-21138, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35539930

RESUMO

Thin and flexible elastomeric membranes are frequently used in many microfluidic applications including microfluidic valves and organs-on-a-chip. The elastic properties of these membranes play an important role in the design of such microfluidic devices. Bulge testing, which is a common method to characterize the elastic behavior of these membranes, involves direct observation of the changes in the bulge height in response to a range of applied pressures. Here, we report a microfluidic approach to measure the bulging height of elastic membranes to replace direct observation of the bulge height under a microscope. Bulging height is measured by tracking the displacement of a fluid inside a microfluidic channel, where the fluid in the channel was designed to be directly in contact with the elastomeric membrane. Polydimethylsiloxane (PDMS) and polyurethane (PU) membranes with thickness 12-35 µm were fabricated by spin coating for bulge testing using both direct optical observation and the microfluidic method. Bulging height determined from the optical method was subject to interpretation by the user, whereas the microfluidic approach provided a simple but sensitive method for determining the bulging height of membranes down to a few micrometers. This work validates the proof of principle that uses microfluidics to accurately measure bulging height in conventional bulge testing for polydimethylsiloxane (PDMS) and polyurethane (PU)eElastomeric membranes.

6.
ACS Biomater Sci Eng ; 4(10): 3522-3533, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33465905

RESUMO

Engineered tissue barrier models offer in vitro alternatives in toxicology and disease research. To mimic barrier-tissue microenvironment, a porous membrane that can approach the stiffness of physiological basement membranes is required. While several biocompatible membranes with micrometer range thickness (10 µm) and a stiffness less than polystyrene (3 GPa) or polyethylene (PET, 2 GPa), have been developed, there has been little effort to optimize the process to enable rapid and reproducible pore production in these membranes. Here, we investigate the use of laser irradiation with femtosecond (fs) pulses because the combination of high-precision and cold-ablation causes minimal damage to polymeric membranes. This process enables automated, high-throughput and reproducible fabrication of thin, microporous membranes that can be utilized to culture cells at air-liquid interface (ALI), a unique culture technique that simulates the tissue-barrier microenvironment. We show the optimization of laser parameters on a thin polyurethane membrane and patterned pores with an average diameter of 5 µm. Tissue was cultured at ALI for 28 days to demonstrate the membrane's utility in constructing a tissue barrier model. These results confirm the utilization of fs laser machining as a viable method for creating a porous barrier substrate in tissue engineering platforms.

7.
ACS Biomater Sci Eng ; 2(4): 473-488, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33465851

RESUMO

The aim of this review is to provide an overview of physiologically relevant microengineered lung-on-a-chip (LoC) platforms for a variety of different biomedical applications with emphasis on drug screening. First, a brief outline of lung anatomy and physiology is presented followed by discussion of the lung parenchyma and its extracellular matrix. Next, we point out the technical challenges in recapitulating the complexity of lung in conventional static two-dimensional microenvironments and the need for alternate lung platforms. The importance of scaling laws is also emphasized in designing these in vitro microengineered lung platforms. The review then discusses current LoC platforms that have been used for testing the efficacy of drugs or as model systems for investigating disorders of the lung parenchyma. Finally, the design parameters in developing an ideal physiologically relevant LoC platform are presented. As this emerging field of organ-on-a-chip can serve an alternative platform for animal testing of drugs or modeling human diseases in vitro, it has significant potential to impact the future of pharmaceutical research.

8.
Virulence ; 4(8): 785-95, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23958954

RESUMO

The rise in antimicrobial drug resistance, alongside the failure of conventional research to discover new antibiotics, will inevitably lead to a public health crisis that can drastically curtail our ability to combat infectious disease. Thus, there is a great global health need for development of antimicrobial countermeasures that target novel cell molecules or processes. RNA represents a largely unexploited category of potential targets for antimicrobial design. For decades, control of cellular behavior was thought to be the exclusive purview of protein-based regulators. The recent discovery of small RNAs (sRNAs) as a universal class of powerful RNA-based regulatory biomolecules has the potential to revolutionize our understanding of gene regulation in practically all biological functions. In general, sRNAs regulate gene expression by base-pairing with multiple downstream target mRNAs to prevent translation of mRNA into protein. In this review, we will discuss recent studies that document discovery of bacterial, viral, and human sRNAs and their molecular mechanisms in regulation of pathogen virulence and host immunity. Illuminating the functional roles of sRNAs in virulence and host immunity can provide the fundamental knowledge for development of next-generation antibiotics using sRNAs as novel targets.


Assuntos
Bactérias/patogenicidade , Doenças Transmissíveis/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Pequeno RNA não Traduzido/metabolismo , Vírus/patogenicidade , Bactérias/genética , Bactérias/imunologia , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/virologia , Humanos , Pequeno RNA não Traduzido/genética , Vírus/genética , Vírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA