Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 21(1): 1028, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525952

RESUMO

BACKGROUND: Prostate cancer is one of the most commonly diagnosed cancers among men. African Americans (AA) are at an increased risk of developing prostate cancer compared to European Americans (EA). miRNAs play a critical role in these tumors, leading to tumor progression. In this study, we investigated the role of miR-182 in racial disparity in prostate cancer. RESULTS: We found significantly increased levels of miR-182 in prostate cancer tissues compared to BPH. Also, miR-182 shows increased expression in AA prostate cancer cell line and tissue samples compared to EA. We performed biochemical recurrence (BCR) - free survival time in AA and EA patients and found that high miR-182 expression had significantly shorter BCR-free survival than patients with low miR-182 expression (P = 0.031). To elucidate the role of miR-182, we knocked down miR-182 in EA (DU-145 and LNCaP) and AA (MDA-PCa-2b) cell lines and found an increase in apoptosis, arrest of the cell cycle, and inhibition of colony formation in the AA cell line to a greater extent than EA cell lines. CONCLUSIONS: Our results showed that PDCD4 is a direct miR-182 target and its inhibition is associated with aggressiveness and high Gleason grade in prostate cancer among AA. These findings show that miR-182 is highly expressed in AA patients and miR-182 may be a target for effective therapy in AA patients.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Negro ou Afro-Americano , MicroRNAs/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas de Ligação a RNA/metabolismo , Idoso , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Inativação Gênica , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Gradação de Tumores , Células-Tronco Neoplásicas , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , População Branca
2.
Cell Physiol Biochem ; 54(1): 53-70, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31961100

RESUMO

BACKGROUND/AIMS: Genistein, a soy isoflavone, has been shown to have anti-cancer effects in various cancers including renal cancer. Long non-coding RNA, HOX transcript antisense RNA (HOTAIR), is involved in cancer progression and metastasis, such as renal cancer. Our aim was to investigate the effects of genistein on HOTAIR chromatin remodeling functions. METHODS: We used MTS assays and Transwell migration assays to study the effects of genistein on cell proliferation and migration respectively in human renal cell carcinoma (RCC) cell lines. We used Western blots to analyze SNAIL and ZO-1 expression. We performed chromatin immunoprecipitation (ChIP) assays to study recruitment of the polycomb repressive complex 2 (PRC2) to the ZO-1 promoter. We performed RNA immunoprecipitation (RIP) assays to study interaction between HOTAIR and PRC2, SMARCB1 or ARID1A. We also performed transfection experiments to overexpress EED, HOTAIR and knockdown SMARCB1. RESULTS: Genistein reduced cell proliferation and migration of human renal cell carcinoma cell lines. ChIP assays indicated that genistein reduces recruitment of the PRC2 to the ZO-1 promoter and increased its expression. RIP assays showed that genistein inhibits HOTAIR interaction with PRC2, leading to tumor suppression. Immunoprecipitation also revealed that genistein reduced EED levels in PRC2, suggesting that decreased EED levels suppress HOTAIR interaction with PRC2. EED overexpression in the presence of genistein restored PRC2 interaction with HOTAIR and reduced ZO-1 transcription, suggesting genistein activates ZO-1 by inhibiting HOTAIR/PRC2 functions. RIP assays also showed that HOTAIR interacts with SMARCB1 and ARID1A, subunits of the human SWI/SNF chromatin remodeling complex and genistein reduces this interaction. Combination of HOTAIR overexpression and SMARCB1 knockdown in the presence of genistein revealed that genistein inhibits SNAIL transcription via the HOTAIR/SMARCB1 pathway. CONCLUSION: Genistein suppresses EED levels in PRC2 and inhibits HOTAIR/PRC2 interaction. Genistein suppresses HOTAIR/PRC2 recruitment to the ZO-1 promoter and enhances ZO-1 transcription. Genistein also inhibits SNAIL transcription via reducing HOTAIR/SMARCB1 interaction. We demonstrate that the reduction of HOTAIR interaction with chromatin remodeling factors by genistein represses HOTAIR/chromatin remodeling pathways to suppress RCC malignancy.


Assuntos
Anticarcinógenos/farmacologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Genisteína/farmacologia , Neoplasias Renais/tratamento farmacológico , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Renais/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/prevenção & controle
3.
Toxicol Appl Pharmacol ; 401: 115102, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32512071

RESUMO

PURPOSE: Cadmium (Cd) is reported to be associated with carcinogenesis. The molecular mechanisms associated with Cd-induced prostate cancer (PCa) remain elusive. MATERIALS AND METHODS: RWPE1, PWR1E and DU 145 cells were used. RT2 Profiler Array, real-time-quantitative-PCR, immunofluorescence, cell cycle, apoptosis, proliferation and colony formation assays along with Gene Set Enrichment Analysis (GSEA) were performed. RESULT: Chronic Cd exposure of non-malignant RWPE1 and PWR1E cells promoted cell survival, proliferation and colony formation with inhibition of apoptosis. Even a two-week Cd exposure of PCa cell line (DU 145) significantly increased the proliferation and decreased apoptosis. RT2 profiler array of 84 genes involved in the Erk/MAPK pathway revealed induction of gene expression in Cd-RWPE1 cells compared to RWPE1. This was confirmed by individual TaqMan gene expression analysis in both Cd-RWPE1 and Cd-PWR1E cell lines. GSEA showed an enrichment of the Erk/MAPK pathway along with other pathways such as KEGG-ERBB, KEGG-Cell Cycle, KEGG-VEGF, KEGG-Pathways in cancer and KEGG-prostate cancer pathway. We randomly selected upregulated genes from Erk/MAPK pathway and performed profile analysis in a PCa data set from the TCGA/GDC data base. We observed upregulation of these genes in PCa compared to normal samples. An increase in phosphorylation of the Erk1/2 and Mek1/2 was observed in Cd-RWPE1 and Cd-PWR1E cells compared to parental cells, confirming that Cd-exposure induces activation of the Erk/MAPK pathway. CONCLUSION: This study demonstrates that Erk/MAPK signaling is a major pathway involved in Cd-induced malignant transformation of normal prostate cells. Understanding these dominant oncogenic pathways may help develop optimal therapeutic strategies for PCa.


Assuntos
Cádmio/toxicidade , Sistema de Sinalização das MAP Quinases/fisiologia , Próstata/efeitos dos fármacos , Próstata/enzimologia , Neoplasias da Próstata/induzido quimicamente , Neoplasias da Próstata/enzimologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Próstata/patologia , Neoplasias da Próstata/patologia
4.
Toxicol Appl Pharmacol ; 409: 115308, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33129824

RESUMO

This study investigated the role of the PI3K/Akt pathway in cadmium (Cd) induced malignant transformation of normal prostate epithelial (PWR1E and RWPE1) cells. Both PWR1E and RWPE1 cells were exposed to 10 µM Cd for one year and designated as Cd-PWR1E and Cd-RWPE1. Cd-RWPE1 cells robustly formed tumors in athymic nude mice. Functionally, Cd-exposure induced tumorigenic attributes indicated by increased wound healing, migration and invasion capabilities in both cell lines. RT2-array analysis revealed many oncogenes including P110α, Akt, mTOR, NFKB1 and RAF were induced whereas tumor suppressor (TS) genes were attenuated in Cd-RWPE1. This was validated by individual quantitative-real-time-PCR at transcriptional and by immunoblot at translational levels. These results were consistent in Cd-PWR1E vs parental PWR1E cells. Gene Set Enrichment Analysis revealed that five prostate cancer (PCa) related pathways were enriched in Cd-exposed cells compared to their normal controls. These pathways include the KEGG- Pathways in cancer, Prostate Cancer Pathway, ERBB, Apoptosis and MAPK pathways. We selected up- and down-regulated genes randomly from the PI3K/Akt pathway array and profiled these in the TCGA/GDC prostate-adenocarcinoma (PRAD) patient cohort. An upregulation of oncogenes and downregulation of TS genes was observed in PCa compared to their normal controls. Taken together, our study reveals that the PI3K/Akt signaling is one of the main molecular pathways involved in Cd-driven transformation of normal prostate epithelial cells to malignant form. Understanding the molecular mechanisms involved in the Cd-driven malignant transformation of normal prostate cells will provide a significant insight to develop better therapeutic strategies for Cd-induced prostate cancer.


Assuntos
Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Cádmio/efeitos adversos , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Estudos de Coortes , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Células Epiteliais/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Próstata/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
5.
Genes Cells ; 23(6): 418-434, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29644770

RESUMO

Mammalian/mechanistic target of rapamycin complex 1 (mTORC1) responds to growth factors and nutrient availability. Amino acids induce the recruitment of mTORC1 to the lysosomal membrane and its consequent activation, but the molecular mechanism of such activation has remained unclear. We have now examined the role of TMEM55B, a lysosomal protein of unknown molecular function, in this process on the basis of the results of proteomics and immunofluorescence analyses showing that TMEM55B interacts with many proteins that participate in mTORC1 activation including components of the vacuolar-type proton ATPase (V-ATPase) and Ragulator complexes at the lysosomal membrane. The amino acid-induced phosphorylation of the mTORC1 substrates S6K and 4E-BP was attenuated in TMEM55B-depleted cells compared with control cells. Depletion of TMEM55B was also found to evoke lysosomal stress as showed by translocation of the transcription factor TFEB to the nucleus. Furthermore, recruitment of the V1 domain subcomplex of V-ATPase to lipid rafts was abrogated in TMEM55B-depleted cells. Collectively, our results suggest that TMEM55B contributes to assembly of the V-ATPase complex in lipid rafts of the lysosomal membrane and to subsequent activation of mTORC1.


Assuntos
Aminoácidos/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatases de Fosfoinositídeos/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Ativação Enzimática , Feminino , Células HEK293 , Células HeLa , Homeostase , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatases de Fosfoinositídeos/química , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Proteínas de Transporte Vesicular/química
6.
Adv Exp Med Biol ; 1140: 143-154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347046

RESUMO

Understanding multicellular organism development from a molecular perspective is no small feat, yet this level of comprehension affords clinician-scientists the ability to identify root causes and mechanisms of congenital diseases. Inarguably, the maturation of molecular biology tools has significantly contributed to the identification of genetic loci that underlie normal and aberrant developmental programs. In combination with cell biology approaches, these tools have begun to elucidate the spatiotemporal expression and function of developmentally-regulated proteins. The emergence of quantitative mass spectrometry (MS) for biological applications has accelerated the pace at which these proteins can be functionally characterized, driving the construction of an increasingly detailed systems biology picture of developmental processes. Here, we review the quantitative MS-based proteomic technologies that have contributed significantly to understanding the role of proteome regulation in developmental processes. We provide a brief overview of these methodologies, focusing on their ability to provide precise and accurate proteome measurements. We then highlight the use of discovery-based and targeted mass spectrometry approaches in model systems to study cellular differentiation states, tissue phenotypes, and spatiotemporal subcellular organization. We also discuss the current application and future perspectives of MS proteomics to study PTM coordination and the role of protein complexes during development.


Assuntos
Biologia do Desenvolvimento , Espectrometria de Massas , Proteômica , Proteoma , Biologia de Sistemas
7.
Proc Natl Acad Sci U S A ; 113(47): E7535-E7544, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27821766

RESUMO

Long noncoding RNAs (lncRNAs) are important regulators of cellular homeostasis. However, their contribution to the cancer phenotype still needs to be established. Herein, we have identified a p53-induced lncRNA, TP53TG1, that undergoes cancer-specific promoter hypermethylation-associated silencing. In vitro and in vivo assays identify a tumor-suppressor activity for TP53TG1 and a role in the p53 response to DNA damage. Importantly, we show that TP53TG1 binds to the multifaceted DNA/RNA binding protein YBX1 to prevent its nuclear localization and thus the YBX1-mediated activation of oncogenes. TP53TG1 epigenetic inactivation in cancer cells releases the transcriptional repression of YBX1-targeted growth-promoting genes and creates a chemoresistant tumor. TP53TG1 hypermethylation in primary tumors is shown to be associated with poor outcome. The epigenetic loss of TP53TG1 therefore represents an altered event in an lncRNA that is linked to classical tumoral pathways, such as p53 signaling, but is also connected to regulatory networks of the cancer cell.


Assuntos
Proteínas de Ligação a DNA/genética , Neoplasias/genética , Neoplasias/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Dano ao DNA , Metilação de DNA , Regulação para Baixo , Epigênese Genética , Células HCT116 , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Transdução de Sinais , Proteína 1 de Ligação a Y-Box/genética
8.
J Cell Mol Med ; 22(10): 4676-4687, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30133114

RESUMO

Cytochrome P450 1B1 (CYP1B1) converts xenobiotics to carcinogens and how lifestyle choices may interact with CYP1B1 polymorphisms and affect prostate cancer risk was assessed. Blood genomic DNA from a Caucasian population was analysed at polymorphic sites of the 5' untranslated region of CYP1B1 using TaqMan genotyping assays. Overall, drinker status and minor alleles at rs2551188, rs2567206 and rs10175368 were associated with prostate cancer. Linkage was observed between rs2551188, rs2567206, rs2567207 and rs10175368, and the G-C-T-G haplotype (major allele at respective sites) was decreased in cancer. Interestingly when classified by lifestyle factors, no associations of genotypes were found for non-smokers and non-drinkers, whereas on the contrary, minor type at rs2567206 and rs10175368 increased and major G-C-T-G decreased risk for cancer among smokers and drinkers. Interestingly, rs2551188, rs2567206 and rs10175368 minor genotypes correlated with increased tissue CYP1B1 as determined by immunohistochemistry. Further, rs10175368 enhanced luciferase activity and mobility shift show stronger binding of nuclear factor for the minor allele. These results demonstrate smoking and alcohol consumption to modify the risks of CYP1B1 polymorphisms for prostate cancer which may be through rs10175368, and this is of importance in understanding their role in the pathogenesis and as a biomarker for this disease.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Citocromo P-450 CYP1B1/genética , Interação Gene-Ambiente , Polimorfismo Genético , Neoplasias da Próstata/genética , Fumar/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Consumo de Bebidas Alcoólicas/genética , Alelos , Estudos de Casos e Controles , Linhagem Celular Tumoral , Expressão Gênica , Haplótipos , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/etnologia , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/patologia , Fatores de Risco , Fumar/genética , População Branca
9.
J Biol Chem ; 289(19): 12946-61, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24668814

RESUMO

Protrudin is a membrane protein that regulates polarized vesicular trafficking in neurons. The protrudin gene (ZFYVE27) is mutated in a subset of individuals with hereditary spastic paraplegia (HSP), and protrudin is therefore also referred to as spastic paraplegia (SPG) 33. We have now generated mice that express a transgene for dual epitope-tagged protrudin under control of a neuron-specific promoter, and we have subjected highly purified protrudin-containing complexes isolated from the brain of these mice to proteomics analysis to identify proteins that associate with protrudin. Protrudin was found to interact with other HSP-related proteins including myelin proteolipid protein 1 (SPG2), atlastin-1 (SPG3A), REEP1 (SPG31), REEP5 (similar to REEP1), Kif5A (SPG10), Kif5B, Kif5C, and reticulon 1, 3, and 4 (similar to reticulon 2, SPG12). Membrane topology analysis indicated that one of three hydrophobic segments of protrudin forms a hydrophobic hairpin domain similar to those of other SPG proteins. Protrudin was found to localize predominantly to the tubular endoplasmic reticulum (ER), and forced expression of protrudin promoted the formation and stabilization of the tubular ER network. The protrudin(G191V) mutant, which has been identified in a subset of HSP patients, manifested an increased intracellular stability, and cells expressing this mutant showed an increased susceptibility to ER stress. Our results thus suggest that protrudin contributes to the regulation of ER morphology and function, and that its deregulation by mutation is a causative defect in HSP.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Paraplegia/metabolismo , Paraplegia/patologia , Substituição de Aminoácidos , Animais , Proteínas de Transporte/genética , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Doenças Genéticas Inatas/genética , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Paraplegia/genética , Proteômica , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Proteínas de Transporte Vesicular
10.
Genes Cells ; 19(2): 97-111, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24251978

RESUMO

Protrudin is a membrane protein that regulates polarized vesicular transport. Now, we have identified a novel isoform of protrudin (protrudin-L) that contains an additional seven amino acids between the FFAT motif and the coiled-coil domain compared with the conventional isoform (protrudin-S) as a result of alternative splicing of a microexon (exon L). Protrudin-L mRNA was found to be mostly restricted to the central nervous system in mice, whereas protrudin-S mRNA was detected in all tissues examined. With the use of a splicing reporter minigene that produces two distinct fluorescent proteins in a manner dependent on the splicing pattern of protrudin transcripts, we found that most neurons express protrudin-L, whereas astrocytes express both protrudin isoforms and oligodendrocytes express only protrudin-S. Protrudin-L associated to a greater extent with vesicle-associated membrane protein-associated protein (VAP) than protrudin-S. Expression of protrudin-L in hippocampal neurons of protrudin-deficient mice also promoted neurite outgrowth more efficiently than protrudin-S. Our results suggest that protrudin-L is a neuron-specific protrudin isoform that promotes axonal elongation and contributes to the establishment of neuronal polarity.


Assuntos
Neurônios/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Processamento Alternativo , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Especificidade de Órgãos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas R-SNARE/genética , Proteínas de Transporte Vesicular/genética
11.
Zoolog Sci ; 31(9): 573-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25186928

RESUMO

Eusocial insects have highly sophisticated societies, showing a conspicuous division of labor associated with different phenotypes. These castes show specific morphologies adapted to discrete tasks. Termite castes are divided into reproductives, workers, and soldiers. Individuals with soldier-like heads as well as developed gonads have been recorded in several primitive families, and are called reproductive soldiers. In some termite species, however, a trade-off-like developmental relationship has been shown between soldier and imaginal characteristics. Thus, while the mechanism that regulates the development of both characteristics in the same individual is interesting, the details are still unclear. We focused on juvenile hormone (JH), which is involved not only in termite caste differentiation, but also in the gonad development of many insects, and we aimed to clarify the effects of JH on the differentiation of reproductive soldiers in Zootermopsis nevadensis. We succeeded in the induction of individuals with reproductive soldier-like gross morphologies by JH analog (JHA) application to several developmental stages. We also observed that gonad development was significantly promoted by JHA application after molts in the induced reproductive soldier-like individuals, but not in natural soldiers. Finally, we confirmed that the gene expression level of vitellogenin was extremely high in the induced reproductive soldier-like individuals following JHA treatment after the molt. These results suggested that soldiers do not have regulatory mechanisms for gonad development involving JH, and the regulation of reproductive soldiers development is different from that of soldiers. Reproductive soldiers may have evolved independently from the soldier caste rather than from an intermediate stage of soldier evolution.


Assuntos
Isópteros/efeitos dos fármacos , Hormônios Juvenis/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Isópteros/genética , Masculino , Reprodução/efeitos dos fármacos , Vitelogeninas/genética
12.
Geriatr Gerontol Int ; 22(10): 883-888, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36071029

RESUMO

AIM: Although older people are at an increased risk of developing delirium during hospitalization, no definitive screening tools exist to predict the condition. This study aimed to examine the effectiveness of the noise pareidolia test (NPT) as a tool for predicting the onset of post-hospitalization delirium in older adults. METHODS: Hospitalized patients who were cared for by a multidisciplinary geriatric care team owing to behavioral symptoms, difficulties in communication, and a history of dementia or delirium were analyzed. The NPT was performed on patients who could complete a Mini-Mental State Examination within 3 days of admission. Demographic and clinical data were recorded on the same day as the NPT or within 3 days of admission. Delirium was assessed using the observation-based Delirium Screening Tool (DST). RESULTS: Of 96 patients, 59 were in the DST-negative group and 37 in the DST-positive group. Benzodiazepine agonist use, serum potassium levels, and the number of images in which pareidolia was noted (i.e., the NPT score) significantly differed between groups. Logistic regression analysis identified benzodiazepine agonist use (odds ratio, 2.897; P = 0.032), serum potassium levels (odds ratio, 0.427; P = 0.041) and NPT scores (odds ratio, 1.253; P = 0.017) as significant predictors of DST results. The receiver operating characteristic curve analysis showed an NPT score of 1 as the appropriate cutoff value. CONCLUSIONS: A positive NPT score was identified as an independent predictor of delirium in older patients admitted to an acute care hospital with cognitive dysfunction. Geriatr Gerontol Int 2022; 22: 883-888.


Assuntos
Disfunção Cognitiva , Delírio , Idoso , Benzodiazepinas , Disfunção Cognitiva/complicações , Disfunção Cognitiva/diagnóstico , Delírio/diagnóstico , Delírio/epidemiologia , Delírio/etiologia , Hospitalização , Humanos , Potássio , Fatores de Risco
13.
Int J Cancer ; 129(11): 2611-20, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21225631

RESUMO

Ectopic expression of CDX2, a caudal-related homeobox protein, is known to be associated with the development of intestinal metaplasia in the stomach and gastric carcinogenesis. Previously, we reported that DNA methylation was partly responsible for CDX2 silencing in gastric cancer (GC). However, the mechanism underlying the aberrant expression of CDX2 during malignant transformation remained unclear. MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional regulators. To elucidate the role of miRNAs in CDX2 downregulation in GC cells, putative miRNAs, such as miR-9, were computationally predicted. After exogenous pre-miR-9 precursor transfection, the luciferase activity of a reporter vector containing a part of the 3'-UTR of CDX2 was downregulated in HEK-293T cells. The inverse correlation between the miR-9 and CDX2 protein levels was demonstrated in GC cell lines. By means of miR-9 overexpression and knockdown techniques, the expression levels of the CDX2 protein and downstream target genes (p21, MUC2 and TFF3) were responsively altered in MKN45 and NUGC-3 cells. Transfection of an anti-miR-9 molecule significantly inhibited cell growth by promoting G(1) cell cycle arrest in MKN45 cells similarly to the effect of CDX2 overexpression. Moreover, examination of the miR-9 levels in primary GC tissues revealed that the amounts of miR-9 in the CDX2-negative group were significantly higher than those in the CDX2-positive group (p = 0.004). Therefore, miR-9 might repress CDX2 expression via the binding site in the 3'-UTR, resulting in the promotion of cell proliferation in GCs.


Assuntos
Regiões 3' não Traduzidas/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Neoplasias Gástricas/genética , Western Blotting , Fator de Transcrição CDX2 , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Regulação para Baixo , Citometria de Fluxo , Proteínas de Homeodomínio/metabolismo , Humanos , Luciferases/metabolismo , MicroRNAs/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
14.
Cancer Res ; 81(6): 1500-1512, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33500248

RESUMO

Metastasis is the leading cause of mortality from kidney cancer, and understanding the underlying mechanism of this event will provide better strategies for its management. Here we investigated the biological, functional, and clinical significance of lncTCL6 and its interacting miR-155 in clear cell renal cell carcinoma (ccRCC). We employed a comprehensive approach to investigate the lncTCL6-miR-155-Src/Akt-mediated epithelial-to-mesenchymal transition (EMT) pathway as a novel regulatory mechanism in ccRCC progression. Expression analyses revealed that lncTCL6 is downregulated in ccRCC compared with normal tissues. Overexpression of lncTCL6 in ccRCC cell lines impaired their oncogenic functions, such as cell proliferation and migration/invasion, and induced cell-cycle arrest and apoptosis; conversely, depletion of lncTCL6 rescued these phenotypic effects. Furthermore, lncTCL6 directly interacted with miR-155. Unlike lncTCL6, miR-155 was overexpressed in ccRCC. Stable knockdown of miR-155 phenocopied the effects of lncTCL6 overexpression. Conversely, reconstitution of miR-155 and suppression of lncTCL6 in noncancerous renal cell HK2 induced tumorigenic characteristics. Patients with higher expression of lncTCL6 and lower expression of miR-155 had better survival probability. When overexpressed, lncTCL6 recruited STAU1 and mediated decay of Src mRNA, followed by a marked downregulation of an integrated network of Src target genes involved in migration, invasion, and EMT. However, the interaction between miR-155 and lncTCL6 attenuated the regulatory role of lncTCL6 on Src-mediated EMT. In conclusion, this study is the first report documenting the lncTCL6-miR155-Src/Akt/EMT network as a novel regulatory mechanism in aggressive ccRCC and a promising therapeutic target to inhibit renal cancer. SIGNIFICANCE: This study's investigation of noncoding RNA interactions in renal cell carcinoma identify miRNA-155-lncRNA TCL6-mediated regulation of the Src-Akt-EMT network as a novel mechanism of disease progression and metastasis.


Assuntos
Carcinoma de Células Renais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Idoso , Animais , Carcinogênese/genética , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/secundário , Carcinoma de Células Renais/cirurgia , Linhagem Celular Tumoral , Regulação para Baixo , Transição Epitelial-Mesenquimal/genética , Seguimentos , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Rim/patologia , Rim/cirurgia , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Neoplasias Renais/cirurgia , Masculino , Camundongos , MicroRNAs/genética , Pessoa de Meia-Idade , Nefrectomia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/metabolismo
15.
PLoS One ; 16(9): e0253877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587154

RESUMO

Catechol-estrogens can cause genetic mutations and to counteract their oncogenicity, the catechol-O-methyltransferase (COMT) gene is capable of neutralizing these reactive compounds. In this study, we determined the functional effects and regulation of COMT in prostate cancer. Both the Cancer Genome Atlas (TCGA) and immunohistochemical analysis of clinical specimens demonstrated a reduction of COMT expression in prostate cancer. Also, western analyses of prostate cancer cell lines show COMT levels to be minimal in DuPro and DU145 and thus, these cells were used for further analyses. Re-expression of COMT led to suppressed migration ability (wound healing assay) and enhanced apoptosis (flow cytometric analyses), and when challenged with 4-hydroxyestradiol, a marked reduction of cell proliferation (MTT assay) was observed. Xenograft growth in athymic mice also resulted in inhibition due to COMT. As a mechanism, western analyses show cleaved CASP3 and BID were increased whereas XIAP and cIAP2 were reduced due to COMT. As COMT expression is low in prostate cancer, its regulation was determined. Databases identified several miRNAs capable of binding COMT and of these, miR-195 was observed to be increased in prostate cancer according to TCGA. Real-time PCR validated upregulation of miR-195 in clinical prostate cancer specimens as well as DuPro and DU145 and interestingly, luciferase reporter showed miR-195 capable of binding COMT and overexpressing miR-195 could reduce COMT in cells. These results demonstrate COMT to play a protective role by activating the apoptosis pathway and for miR-195 to regulate its expression. COMT may thus be a potential biomarker and gene of interest for therapeutic development for prostate cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Catecol O-Metiltransferase/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Próstata/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Catecol O-Metiltransferase/genética , Movimento Celular , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Dev Cell ; 56(21): 3019-3034.e7, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34655525

RESUMO

Sex disparities in cardiac homeostasis and heart disease are well documented, with differences attributed to actions of sex hormones. However, studies have indicated sex chromosomes act outside of the gonads to function without mediation by gonadal hormones. Here, we performed transcriptional and proteomics profiling to define differences between male and female mouse hearts. We demonstrate, contrary to current dogma, cardiac sex disparities are controlled not only by sex hormones but also through a sex-chromosome mechanism. Using Turner syndrome (XO) and Klinefelter (XXY) models, we find the sex-chromosome pathway is established by X-linked gene dosage. We demonstrate cardiac sex disparities occur at the earliest stages of heart formation, a period before gonad formation. Using these datasets, we identify and define a role for alpha-1B-glycoprotein (A1BG), showing loss of A1BG leads to cardiac defects in females, but not males. These studies provide resources for studying sex-biased cardiac disease states.


Assuntos
Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Proteômica , Caracteres Sexuais , Cromossomos Sexuais/metabolismo , Animais , Feminino , Genes Ligados ao Cromossomo X/genética , Masculino , Camundongos , Proteômica/métodos
17.
Carcinogenesis ; 31(5): 777-84, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20080834

RESUMO

Aberrant expression of microRNA (miRNA) has been reported in various cancers. To clarify the role of miRNA in gastric carcinogenesis, we performed miRNA microarray analysis and investigated expression changes of miRNAs in a 5-aza-2'-deoxycytidine (5-aza-CdR)-treated gastric cancer cell line, KATO-III. On microarray analysis, five miRNAs were found to be upregulated (>3-fold) after 5-aza-CdR treatment compared with untreated cells. Among them, miR-181c and miR-432AS exhibited CpG islands in their upstream sequences on computational analysis, and their upregulation was verified by reverse transcription-polymerase chain reaction analyses. In particular, miR-181c upregulation was found not only in KATO-III but also in two other gastric and one colorectal cancer cell line with 5-aza-CdR treatment. Decreased expression of miR-181c was observed in 9 of 16 primary gastric carcinoma (GC) cases compared with the corresponding non-cancerous stomach tissues. Hypermethylation signals in the upstream region of miR-181c were observed in some cultured and primary GC cells with negative or low miR-181c expression. Transfection of the precursor miR-181c molecule induced decreased growth of two gastric cancer cell lines, KATO-III and MKN45. As for targets of miR-181c, oncogenic NOTCH4 and KRAS were identified by complementary DNA microarray analysis after precursor miR-181c molecule transfection, computational searches of miRNA target databases and reporter assaying using the 3'-untranslated regions of the two genes. These results indicate that miR-181c may be silenced through methylation and play important roles in gastric carcinogenesis through its target genes, such as NOTCH4 and KRAS.


Assuntos
Inativação Gênica , MicroRNAs/genética , Neoplasias Gástricas/etiologia , Regiões 3' não Traduzidas , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ilhas de CpG , Metilação de DNA , Decitabina , Humanos , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Receptor Notch4 , Receptores Notch/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteínas ras/genética
18.
Int J Cancer ; 127(5): 1106-14, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20020497

RESUMO

To clarify the role of micro (mi) RNAs in gastric carcinogenesis, we studied the expression and function of miRNAs in gastric carcinoma (GC) cells. Initially, we performed microarray analysis using total RNA from 3 human GC cell lines and noncancerous gastric tissue. Among the downregulated miRNAs in GC cells, miR-212 expression was decreased in all 8 GC cell lines examined and a significant decrease of miR-212 expression in human primary GC tissues was also observed in 6 of 11 cases. Transfection of the precursor miR-212 molecule induced decreased growth of 3 GC cell lines. Using 3 different databases, methyl-CpG-binding protein MeCP2 was postulated to be a target of miR-212. As seen on reporter assaying, miR-212 repressed the construct with the MECP2 3'-UTR. Ectopic expression of miR-212 repressed expression of the MeCP2 protein but not the MECP2 mRNA level. These data suggest that downregulation of miR-212 may be related to gastric carcinogenesis through its target genes, such as MECP2.


Assuntos
Neoplasias Intestinais/genética , Proteína 2 de Ligação a Metil-CpG/antagonistas & inibidores , MicroRNAs/genética , Neoplasias Gástricas/genética , Apoptose , Western Blotting , Proliferação de Células , Metilação de DNA , Regulação para Baixo , Feminino , Humanos , Técnicas Imunoenzimáticas , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Luciferases/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Biossíntese de Proteínas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Células Tumorais Cultivadas
19.
Cell Rep ; 30(11): 3875-3888.e3, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187556

RESUMO

Physical forces generated by tissue-tissue interactions are a critical component of embryogenesis, aiding the formation of organs in a coordinated manner. In this study, using Xenopus laevis embryos and phosphoproteome analyses, we uncover the rapid activation of the mitogen-activated protein (MAP) kinase Erk2 upon stimulation with centrifugal, compression, or stretching force. We demonstrate that Erk2 induces the remodeling of cytoskeletal proteins, including F-actin, an embryonic cadherin C-cadherin, and the tight junction protein ZO-1. We show these force-dependent changes to be prerequisites for the enhancement of cellular junctions and tissue stiffening during early embryogenesis. Furthermore, Erk2 activation is FGFR1 dependent while not requiring fibroblast growth factor (FGF) ligands, suggesting that cell/tissue deformation triggers receptor activation in the absence of ligands. These findings establish previously unrecognized functions for mechanical forces in embryogenesis and reveal its underlying force-induced signaling pathways.


Assuntos
Desenvolvimento Embrionário , Epitélio/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Estresse Mecânico , Xenopus laevis/embriologia , Xenopus laevis/fisiologia , Animais , Fenômenos Biomecânicos , Gastrulação , Junções Intercelulares/metabolismo , Fosforilação
20.
Nat Commun ; 11(1): 806, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041945

RESUMO

The co-evolution and co-existence of viral pathogens with their hosts for millions of years is reflected in dynamic virus-host protein-protein interactions (PPIs) that are intrinsic to the spread of infections. Here, we investigate the system-wide dynamics of protein complexes throughout infection with the herpesvirus, human cytomegalovirus (HCMV). Integrating thermal shift assays and mass spectrometry quantification with virology and microscopy, we monitor the temporal formation and dissociation of hundreds of functional protein complexes and the dynamics of host-host, virus-host, and virus-virus PPIs. We establish pro-viral roles for cellular protein complexes and translocating proteins. We show the HCMV receptor integrin beta 1 dissociates from extracellular matrix proteins, becoming internalized with CD63, which is necessary for virus production. Moreover, this approach facilitates characterization of essential viral proteins, such as pUL52. This study of temporal protein complex dynamics provides insights into mechanisms of HCMV infection and a resource for biological and therapeutic studies.


Assuntos
Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Linhagem Celular , Citomegalovirus/metabolismo , Ácidos Graxos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Fatores Imunológicos/metabolismo , Integrina beta1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Agregação Patológica de Proteínas , Biossíntese de Proteínas , Mapas de Interação de Proteínas , Estabilidade Proteica , Proteômica , Receptor IGF Tipo 2/metabolismo , Transdução de Sinais , Tetraspanina 30/metabolismo , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA