Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neuroimage ; 275: 120187, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37230205

RESUMO

Transcranial alternating current stimulation (tACS) can influence perception and behavior, with recent evidence also highlighting its potential impact in clinical settings, but its underlying mechanisms are poorly understood. Behavioral and indirect physiological evidence indicates that phase-dependent constructive and destructive interference between the applied electric field and brain oscillations at the stimulation frequency may play an important role, but in vivo validation during stimulation was unfeasible because stimulation artifacts impede single-trial assessment of brain oscillations during tACS. Here, we attenuated stimulation artifacts to provide evidence for phase-dependent enhancement and suppression of visually evoked steady state responses (SSR) during amplitude-modulated tACS (AM-tACS). We found that AM-tACS enhanced and suppressed SSR by 5.77 ± 2.95%, while it enhanced and suppressed corresponding visual perception by 7.99 ± 5.15%. While not designed to investigate the underlying mechanisms of this effect, our study suggests feasibility and superiority of phase-locked (closed-loop) AM-tACS over conventional (open-loop) AM-tACS to purposefully enhance or suppress brain oscillations at specific frequencies.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Humanos , Encéfalo/fisiologia , Percepção Visual/fisiologia , Artefatos
2.
Neuroimage ; 228: 117571, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33412281

RESUMO

Brain oscillations, e.g. measured by electro- or magnetoencephalography (EEG/MEG), are causally linked to brain functions that are fundamental for perception, cognition and learning. Recent advances in neurotechnology provide means to non-invasively target these oscillations using frequency-tuned amplitude-modulated transcranial alternating current stimulation (AM-tACS). However, online adaptation of stimulation parameters to ongoing brain oscillations remains an unsolved problem due to stimulation artifacts that impede such adaptation, particularly at the target frequency. Here, we introduce a real-time compatible artifact rejection algorithm (Stimulation Artifact Source Separation, SASS) that overcomes this limitation. SASS is a spatial filter (linear projection) removing EEG signal components that are maximally different in the presence versus absence of stimulation. This enables the reliable removal of stimulation-specific signal components, while leaving physiological signal components unaffected. For validation of SASS, we evoked brain activity with known phase and amplitude using 10 Hz visual flickers across 7 healthy human volunteers. 64-channel EEG was recorded during and in absence of 10 Hz AM-tACS targeting the visual cortex. Phase differences between AM-tACS and the visual stimuli were randomized, so that steady-state visually evoked potentials (SSVEPs) were phase-locked to the visual stimuli but not to the AM-tACS signal. For validation, distributions of single-trial amplitude and phase of EEG signals recorded during and in absence of AM-tACS were compared for each participant. When no artifact rejection method was applied, AM-tACS stimulation artifacts impeded assessment of single-trial SSVEP amplitude and phase. Using SASS, amplitude and phase of single trials recorded during and in absence of AM-tACS were comparable. These results indicate that SASS can be used to establish adaptive (closed-loop) AM-tACS, a potentially powerful tool to target various brain functions, and to investigate how AM-tACS interacts with electric brain oscillations.


Assuntos
Algoritmos , Artefatos , Encéfalo/fisiologia , Processamento de Sinais Assistido por Computador , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
3.
Brain Stimul ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029737

RESUMO

BACKGROUND: Prior work has shown that transcranial alternating current stimulation (tACS) of parietooccipital alpha oscillations (8 - 14 Hz) can modulate working memory (WM) performance as a function of the phase lag to endogenous oscillations. However, leveraging this effect using real-time phase-tuned tACS has not been feasible so far due to stimulation artifacts preventing continuous phase tracking. OBJECTIVES/HYPOTHESIS: We aimed to develop a system that tracks and adapts the phase lag between tACS and ongoing parietooccipital alpha oscillations in real-time. We hypothesized that such real-time phase-tuned tACS enhances working memory performance, depending on the phase lag. METHODS: We developed real-time phase-tuned closed-loop amplitude-modulated tACS (CLAM-tACS) targeting parietooccipital alpha oscillations. CLAM-tACS was applied at six different phase lags relative to ongoing alpha oscillations while participants (N = 21) performed a working memory task. To exclude that behavioral effects of CLAM-tACS were mediated by other factors such as sensory co-stimulation, a second group of participants (N = 25) received equivalent stimulation of the forehead. RESULTS: WM accuracy improved in a phase lag dependent manner (p = 0.0350) in the group receiving parietooccipital stimulation, with the strongest enhancement observed at 330° phase lag between tACS and ongoing alpha oscillations (p = 0.00273, d = 0.976). Moreover, across participants, modulation of frontoparietal alpha oscillations correlated both in amplitude (p = 0.0248) and phase (p = 0.0270) with the modulation of WM accuracy. No such effects were observed in the control group receiving frontal stimulation. CONCLUSIONS: Our results demonstrate the feasibility and efficacy of real-time phase-tuned CLAM-tACS in modulating both brain activity and behavior, thereby paving the way for further investigation into brain-behavior relationships and the exploration of innovative therapeutic applications.

4.
Front Neurogenom ; 4: 1233722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234499

RESUMO

Brain-computer interfaces (BCI) can provide real-time and continuous assessments of mental workload in different scenarios, which can subsequently be used to optimize human-computer interaction. However, assessment of mental workload is complicated by the task-dependent nature of the underlying neural signals. Thus, classifiers trained on data from one task do not generalize well to other tasks. Previous attempts at classifying mental workload across different cognitive tasks have therefore only been partially successful. Here we introduce a novel algorithm to extract frontal theta oscillations from electroencephalographic (EEG) recordings of brain activity and show that it can be used to detect mental workload across different cognitive tasks. We use a published data set that investigated subject dependent task transfer, based on Filter Bank Common Spatial Patterns. After testing, our approach enables a binary classification of mental workload with performances of 92.00 and 92.35%, respectively for either low or high workload vs. an initial no workload condition, with significantly better results than those of the previous approach. It, nevertheless, does not perform beyond chance level when comparing high vs. low workload conditions. Also, when an independent component analysis was done first with the data (and before any additional preprocessing procedure), even though we achieved more stable classification results above chance level across all tasks, it did not perform better than the previous approach. These mixed results illustrate that while the proposed algorithm cannot replace previous general-purpose classification methods, it may outperform state-of-the-art algorithms in specific (workload) comparisons.

5.
Cereb Cortex Commun ; 3(2): tgac018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35592391

RESUMO

Working memory (WM) is essential for reasoning, decision-making, and problem solving. Recently, there has been an increasing effort in improving WM through noninvasive brain stimulation (NIBS), especially transcranial direct and alternating current stimulation (tDCS/tACS). Studies suggest that tDCS and tACS can modulate WM performance, but large variability in research approaches hinders the identification of optimal stimulation protocols and interpretation of study results. Moreover, it is unclear whether tDCS and tACS differentially affect WM. Here, we summarize and compare studies examining the effects of tDCS and tACS on WM performance in healthy adults. Following PRISMA-selection criteria, our systematic review resulted in 43 studies (29 tDCS, 11 tACS, 3 both) with a total of 1826 adult participants. For tDCS, only 4 out of 23 single-session studies reported effects on WM, while 7 out of 9 multi-session experiments showed positive effects on WM training. For tACS, 10 out of 14 studies demonstrated effects on WM, which were frequency dependent and robust for frontoparietal stimulation. Our review revealed no reliable effect of single-session tDCS on WM but moderate effects of multi-session tDCS and single-session tACS. We discuss the implications of these findings and future directions in the emerging research field of NIBS and WM.

6.
Front Psychiatry ; 13: 867314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401281

RESUMO

Background: Hallucinogen persisting perception disorder (HPPD) is characterized by spontaneous recurrence of visual hallucinations or disturbances after previous consumption of hallucinogens, such as lysergic acid diethylamide (LSD). The underlying physiological mechanisms are unknown and there is no standardized treatment strategy available. Case Presentation: A 33-year-old male patient presented with persistent visual distortions (halos around objects, intensified colors, positive after images, and trails following moving objects) that developed after repeated use of hallucinogenic drugs at the age of 18. Symptoms developed gradually and worsened several months later, resulting in various pharmacological and psychosocial treatment attempts that remained unsuccessful, however. At presentation, 32-channel electroencephalography (EEG) showed increased delta activity over the occipital brain regions, reminiscent of occipital intermittent rhythmic delta activity (OIRDA) usually seen in children. Two sessions of cathodal (inhibitory) transcranial direct current stimulation (tDCS) over 30 min attenuated visual hallucinations and occipital delta activity by approximately 60%. The response persisted for over four weeks. Conclusion: Pathological delta activity over occipital brain regions may play an important role in the development and perpetuation of HPPD and can be attenuated by non-invasive brain stimulation.

7.
Prog Neurobiol ; 216: 102311, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35750290

RESUMO

The human brain is arguably one of the most complex systems in nature. To understand how it operates, it is essential to understand the link between neural activity and behavior. Experimental investigation of that link requires tools to interact with neural activity during behavior. Human neuroscience, however, has been severely bottlenecked by the limitations of these tools. While invasive methods can support highly specific interaction with brain activity during behavior, their applicability in human neuroscience is limited. Despite extensive development in the last decades, noninvasive alternatives have lacked spatial specificity and yielded results that are commonly fraught with variability and replicability issues, along with relatively limited understanding of the neural mechanisms involved. Here we provide a comprehensive review of the state-of-the-art in interacting with human brain activity and highlight current limitations and recent efforts to overcome these limitations. Beyond crucial technical and scientific advancements in electromagnetic brain stimulation, new frontiers in interacting with human brain activity such as task-irrelevant sensory stimulation and focal ultrasound stimulation are introduced. Finally, we argue that, along with technological improvements and breakthroughs in noninvasive methods, a paradigm shift towards adaptive closed-loop stimulation will be a critical step for advancing human neuroscience.


Assuntos
Neurociências , Estimulação Magnética Transcraniana , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Estimulação Magnética Transcraniana/métodos
8.
Patterns (N Y) ; 2(7): 100304, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34286308

RESUMO

Implementation of effective brain or neural stimulation protocols for restoration of complex sensory perception, e.g., in the visual domain, is an unresolved challenge. By leveraging the capacity of deep learning to model the brain's visual system, optic nerve stimulation patterns could be derived that are predictive of neural responses of higher-level cortical visual areas in silico. This novel approach could be generalized to optimize different types of neuroprosthetics or bidirectional brain-computer interfaces (BCIs).

9.
J Neural Eng ; 18(4)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34229308

RESUMO

Objective.Voluntary control of sensorimotor rhythms (SMRs, 8-12 Hz) can be used for brain-computer interface (BCI)-based operation of an assistive hand exoskeleton, e.g. in finger paralysis after stroke. To gain SMR control, stroke survivors are usually instructed to engage in motor imagery (MI) or to attempt moving the paralyzed fingers resulting in task- or event-related desynchronization (ERD) of SMR (SMR-ERD). However, as these tasks are cognitively demanding, especially for stroke survivors suffering from cognitive impairments, BCI control performance can deteriorate considerably over time. Therefore, it would be important to identify biomarkers that predict decline in BCI control performance within an ongoing session in order to optimize the man-machine interaction scheme.Approach.Here we determine the link between BCI control performance over time and heart rate variability (HRV). Specifically, we investigated whether HRV can be used as a biomarker to predict decline of SMR-ERD control across 17 healthy participants using Granger causality. SMR-ERD was visually displayed on a screen. Participants were instructed to engage in MI-based SMR-ERD control over two consecutive runs of 8.5 min each. During the 2nd run, task difficulty was gradually increased.Main results.While control performance (p= .18) and HRV (p= .16) remained unchanged across participants during the 1st run, during the 2nd run, both measures declined over time at high correlation (performance: -0.61%/10 s,p= 0; HRV: -0.007 ms/10 s,p< .001). We found that HRV exhibited predictive characteristics with regard to within-session BCI control performance on an individual participant level (p< .001).Significance.These results suggest that HRV can predict decline in BCI performance paving the way for adaptive BCI control paradigms, e.g. to individualize and optimize assistive BCI systems in stroke.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Mãos , Frequência Cardíaca , Humanos , Imagens, Psicoterapia
10.
Data Brief ; 36: 107011, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33948453

RESUMO

Transcranial alternating current stimulation (tACS) can affect perception, learning and cognition, but the underlying mechanisms are not well understood. A promising strategy to elucidate these mechanisms aims at applying tACS while electric or magnetic brain oscillations targeted by stimulation are recorded. However, reconstructing brain oscillations targeted by tACS remains a challenging problem due to stimulation artifacts. Besides lack of an established strategy to effectively supress such stimulation artifacts, there are also no resources available that allow for the development and testing of new and effective tACS artefact suppression algorithms, such as adaptive spatial filtering using beamforming or signal-space projection. Here, we provide a full dataset comprising encephalographic (EEG) recordings across six healthy human volunteers who underwent 10-Hz amplitude-modulated tACS (AM-tACS) during a 10-Hz steady-state visually evoked potential (SSVEP) paradigm. Moreover, data and scripts are provided related to the validation of a novel stimulation artefact suppression strategy, Stimulation Artifact Source Separation (SASS), removing EEG signal components that are maximally different in the presence versus absence of stimulation. Besides including EEG single-trial data and comparisons of 10-Hz brain oscillatory phase and amplitude recorded across three conditions (condition 1: no stimulation, condition 2: stimulation with SASS, condition 3: stimulation without SASS), also power spectra and topographies of SSVEP amplitudes across all three conditions are presented. Moreover, data is provided for assessing nonlinear modulations of the stimulation artifact in both time and frequency domains due to heartbeats. Finally, the dataset includes eigenvalue spectra and spatial patterns of signal components that were identified and removed by SASS for stimulation artefact suppression at the target frequency. Besides providing a valuable resource to assess properties of AM-tACS artifacts in the EEG, this dataset allows for testing different artifact rejection methods and offers in-depth insights into the workings of SASS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA