RESUMO
Design, synthesis, and biological evaluation of two series of O4'-benzyl-hispidol derivatives and the analogous corresponding O3'-benzyl derivatives aiming to develop selective monoamine oxidase-B inhibitors endowed with anti-neuroinflammatory activity is reported herein. The first O4'-benzyl-hispidol derivatives series afforded several more potentially active and MAO-B inhibitors than the O3'-benzyl derivatives series. The most potential compound 2e of O4'-benzyl derivatives elicited sub-micromolar MAO-B IC50 of 0.38 µM with a selectivity index >264 whereas most potential compound 3b of O3'-benzyl derivatives showed only 0.95 MAO-B IC50 and a selectivity index >105. Advancement of the most active compounds showing sub-micromolar activities to further cellular evaluations of viability and induced production of pro-neuroinflammatory mediators confirmed compound 2e as a potential lead compound inhibiting the production of the neuroinflammatory mediator nitric oxide significantly by microglial BV2 cells at 3 µM concentration without significant cytotoxicity up to 30 µM. In silico molecular docking study predicted plausible binding modes with MAO enzymes and provided insights at the molecular level. Overall, this report presents compound 2e as a potential lead compound to develop potential multifunctional compounds.
Assuntos
Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase , Monoaminoxidase , Inibidores da Monoaminoxidase/farmacologia , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Monoaminoxidase/metabolismo , Relação Estrutura-Atividade , Animais , Camundongos , Humanos , Estrutura Molecular , Linhagem Celular , Relação Dose-Resposta a Droga , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/químicaRESUMO
A series of designed stilbenoid-flavanone hybrids featuring sp3-hybridized C2 and C3 atoms of C-ring was evaluated against colorectal cancers presented compounds 4, 17, and 20 as the most potential compounds among explored compounds. Evaluation of the anticancer activity spectrum of compounds 4, 17, and 20 against diverse solid tumors presented compounds 17 and 20 with interesting anticancer spectrum. The potencies of compounds 17 and 20 were assessed in comparison with FDA-approved anticancer drugs. Compound 17 was the, in general, the most potent showing low micromolar GI50 values that were more potent than the standard FDA-approved drugs against several solid tumors including colon, brain, skin, renal, prostate and breast tumors. Compound 17 was subjected for evaluation against normal cell lines and was subjected to a mechanism study in HCT116 colon cancer cells which presented it as an inhibitor of Wnt signaling pathway triggering G2/M cell cycle arrest though activation of p53-p21 pathway as well as intrinsic and extrinsic apoptotic death of colon cancer cells. Compound 17 might be a candidate for further development against diverse solid tumors including colon cancer.
Assuntos
Antineoplásicos , Neoplasias do Colo , Flavanonas , Iohexol/análogos & derivados , Estilbenos , Masculino , Humanos , Via de Sinalização Wnt , Estilbenos/farmacologia , Antineoplásicos/farmacologia , Células HCT116 , Flavanonas/farmacologia , Apoptose , Neoplasias do Colo/tratamento farmacológico , Proliferação de Células , Linhagem Celular Tumoral , beta Catenina/metabolismoRESUMO
Conformational restriction was addressed towards the development of more selective and effective antileishmanial agents than currently used drugs for treatment of Leishmania donovani; the causative parasite of the fatal visceral leishmaniasis. Five types of cyclopentane-based conformationally restricted miltefosine analogs that were previously explored in literature as anticancer AKT-inhibitors were reprepared and repurposed as antileishmanial agents. Amongst, positions-1 and 2 cis-conformationally-restricted compound 1a and positions-2 and 3 trans-conformationally-restricted compound 3b were highly potent eliciting sub-micromolar IC50 values for inhibition of infection and inhibition of parasite number compared with the currently used miltefosine drug that showed low micromolar IC50 values for inhibition of infection and inhibition of parasite number. Compounds 1a and 3b eradicated the parasite without triggering host cells cytotoxicity over more than one log concentration interval which is a superior performance compared to miltefosine. In silico studies suggested that conformational restriction conserved the conformer capable of binding LdAKT-like kinase while it might be possible that it excludes other conformers mediating undesirable effects and/or toxicity of miltefosine. Together, this study presents compounds 1a and 3b as antileishmanial agents with superior performance over the currently used miltefosine drug.
Assuntos
Antiprotozoários , Leishmania donovani , Proteínas Proto-Oncogênicas c-akt , Ciclopentanos/farmacologia , Reposicionamento de Medicamentos , Antiprotozoários/químicaRESUMO
Phenethyl-based edelfosine-analogs with saturated, monounsaturated, or polyunsaturated alkoxy substituents on phenyl ring were designed as novel antitumor lipids modulating p38 MAPK. Evaluation of the synthesised compounds against nine panels of diverse cancer cells presented saturated and monounsaturated alkoxy-substituted derivatives as the most active than other derivatives. In addition, ortho-substituted compounds were more active than meta- or ortho-substituted compounds. They were potential anticancer agents against blood, lung, colon, CNS, ovary, renal, and prostate cancers but not against skin nor breast cancers. Compounds, 1b and 1a emerged as the most potential anticancer agents. Assessment of compound 1b impact on p38 MAPK and AKT confirmed it as an inhibitor of p38 MAPK but not AKT. In silico study suggested compounds 1b and 1a as possible binders to the lipid binding pocket of p38 MAPK. Overall, compounds 1b and 1a as novel broad spectrum antitumor lipids modulating activity of p38 MAPK for further development.
Assuntos
Antineoplásicos , Proteínas Quinases p38 Ativadas por Mitógeno , Masculino , Feminino , Humanos , Fosforilação , Antineoplásicos/farmacologia , LipídeosRESUMO
A chromone-peptidyl hybrids series was synthesised and rationally repurposed towards identification of potential antileishmanial hits against visceral leishmaniasis. Three hybrids 7c, 7n, and 7h showed potential IC50 values (9.8, 10, and 12 µM, respectively) which were comparable to erufosine IC50 (9.8 µM) but lower potency than miltefosine IC50 (3.5 µM). Preliminary assessment of cytotoxicity using human THP-1 cells presented chromone-peptidyl hybrids 7c and 7n as non-cytotoxic up to 100 µM while erufosine and miltefosine had CC50 of 19.4 µM and >40 µM, respectively. In silico studies pinpointed the N-p-methoxyphenethyl substituent at the peptidyl moiety together with the oxygen-based substituted functions of the phenyl ring of the chromone moiety as crucial players in binding to LdCALP. Together, these findings present chromone-peptidyl hybrids 7c and 7n as potential and anticipated non-cytotoxic antileishmanial hit compounds for possible development of potential antileishmanial agents against visceral leishmaniasis.
Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , CromonasRESUMO
The effectiveness of chemotherapy in hepatocellular carcinoma (HCC) is restricted by chemo-resistance and systemic side effects. To improve the efficacy and safety of chemotherapeutics in HCC management, scientists have attempted to deliver these drugs to malignant tissues using targeted carriers as nanoparticles (NPs). Among the three types of NPs targeting (active, passive, and stimuli-responsive), active targeting is the most commonly investigated in HCC treatment. Despite the observed promising results so far, clinical research on nanomedicine targeting for HCC treatment still faces many challenges.These include batch-to-batch physicochemical properties' variations, limiting large scale production and insufficient data on human and environmental toxicities. This review summarized the characteristics of different nanocarriers, ligands, targeted receptors on HCC cells and provided recommendations to overcome the challenges, facing this novel line of treatment for HCC.
Assuntos
Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Hepáticas/tratamento farmacológico , Nanomedicina , Nanopartículas/administração & dosagem , Animais , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia , Nanopartículas/químicaRESUMO
Multifunctional molecules might offer better treatment of complex multifactorial neurological diseases. Monoaminergic pathways dysregulation and neuroinflammation are common convergence points in diverse neurodegenerative and neuropsychiatric disorders. Aiming to target these diseases, polypharmacological agents modulating both monoaminergic pathways and neuroinflammatory were addressed. A library of analogues of the natural product hispidol was prepared and evaluated for inhibition of monoamine oxidases (MAOs) isoforms. Several molecules emerged as selective potential MAO B inhibitors. The most promising compounds were further evaluated in vitro for their impact on microglia viability, induced production of proinflammatory mediators and MAO-B inhibition mechanism. Amongst tested compounds, 1p was a safe potent competitive reversible MAO-B inhibitor and inhibitor of microglial production of neuroinflammatory mediators; NO and PGE2. In-silico study provided insights into molecular basis of the observed selective MAO B inhibition. This study presents compound 1p as a promising lead compound for management of neurodegenerative disease.
Assuntos
Benzofuranos/farmacologia , Compostos de Benzilideno/farmacologia , Produtos Biológicos/farmacologia , Inflamação/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Benzofuranos/síntese química , Benzofuranos/química , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Descoberta de Drogas , Humanos , Inflamação/metabolismo , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Doenças Neurodegenerativas/metabolismo , Relação Estrutura-AtividadeRESUMO
Up to date, the current clinical practice employs only symptomatic treatments for management of Parkinson's disease (PD) but unable to stop disease progression. The discovery of new chemical entities endowed with potent and selective human monoamine oxidase B (hMAO-B) inhibitory activity is a clinically relevant subject. Herein, a structural optimization strategy for safinamide (a well-known second generation hMAO-B inhibitor) afforded a series of thirty-six safinamide-derived new analogs (4aa-bj). Most compounds showed promising inhibitory activities against hMAO-B (>70% inhibition at a single dose concentration of 10 µM), with no apparent effect on hMAO-A at 100 µM. Moreover, while six compounds (4ak, 4as, 4az, 4be, 4bg, and 4bi) exhibited potent double-digit nanomolar activities over hMAO-B with IC50 values of 29.5, 42.2, 22.3, 18.8, 42.2, and 33.9 nM, respectively, three derivatives (4aq, 4at, and 4bf), possessing the same carboxamide moiety (2-pyrazinyl), showed the most potent single-digit nanomolar activities (IC50 = 9.7, 5.1, and 3.9 nM, respectively). Compound 4bf revealed an excellent selectivity index (SI > 25641) with a 29-fold increase compared to safinamide (SI > 892). A structure activity relationship along with molecular docking simulations provided insights into enzyme - inhibitor interactions and a rational for the observed activity. In an in vivo MPTP-induced mouse model of PD, oral administration of compound 4bf significantly protected nigrostriatal dopaminergic neurons as revealed by tyrosine hydroxylase staining and prevented MPTP-induced Parkinsonism as revealed by motor behavioral assays. Accordingly, we present compound 4bf as a novel, highly potent, and selective hMAO-B inhibitor with an effective therapeutic profile for relieving PD.
Assuntos
Alanina/análogos & derivados , Benzilaminas/farmacologia , Descoberta de Drogas , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Alanina/síntese química , Alanina/química , Alanina/farmacologia , Benzilaminas/síntese química , Benzilaminas/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Doença de Parkinson/metabolismo , Relação Estrutura-AtividadeRESUMO
A rational-based process was adopted for repurposing pyrrolidine-based 3-deoxysphingosylphosphorylcholine analogs bearing variable acyl chains, different stereochemical configuration and/or positional relationships. Structural features were highly influential on activity. Amongst, enantiomer 1e having 1,2-vicinal relationship for the -CH2O- and the N-acyl moieties, a saturated palmitoyl chain and an opposite stereochemical configuration to natural sphingolipids was the most potent hit compound against promastigotes showing IC50 value of 28.32 µM. The corresponding enantiomer 1a was 2-fold less potent showing a eudismic ratio of 0.54 in promastigotes. Compounds 1a and 1e inhibited the growth of amastigotes more potently relative to promastigotes. Amongst, enantiomer 1a as the more selective and safer. In silico docking study using a homology model of Leishmania donovani inositol phosphoceramide synthase (IPCS) provided plausible reasoning for the molecular factors underlying the found activity. Collectively, this study suggests compounds 1a and 1e as potential hit compounds for further development of new antileishmanial agents.
Assuntos
Antiprotozoários/química , Leishmania donovani/efeitos dos fármacos , Fosforilcolina/química , Pirrolidinas/química , Amida Sintases/metabolismo , Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Palmitatos/química , Pirrolidinas/farmacologia , Esfingomielinas/química , Relação Estrutura-AtividadeRESUMO
A series of diarylurea derivatives comprising 2,4-diarylpyrimidines were synthesized based on a combination of postulated molecular hybridization design and failed-ligands repurposing approaches, which enabled the discovery of novel potential antiproliferative agents. Towards credible biological evaluation, an in vitro anticancer activity assay was conducted employing a library of 60 cancer cell lines constituting nine panels representing blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers. The results revealed high effectiveness and broad-spectrum anticancer activity of compounds 4m and 4g. Five-dose assay of compounds 4m and 4g proved their high potency that surpassed that of four standard kinase inhibitors FDA-approved anticancer drugs against many cancer cells. Towards the identification of their molecular target, screening of kinase inhibitory profile employing a panel of 51 kinases involved in cancer revealed inhibition of several kinases from the platelet-derived growth factor/vascular endothelial growth factor receptor (PVR) kinase family, which might mediate, at least in part, the antiproliferative activity. Molecular docking of 4g into the crystal structure of the Feline McDonough Sarcoma (FMS) kinase predicted that it binds to a pocket formed by the juxtamembrane domain, the catalytic loop, and the αE helix, thus stabilizing the inhibited conformation of the kinase. Flow cytometric study of the cytotoxic effects of compound 4g in A549 cells showed it induces dose- and time-dependent apoptotic events leading to cell death. Collectively, this work presents compound 4g as a potential broad-spectrum anticancer agent against multiple cancer types.
Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Pirimidinas/farmacologia , Ureia/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Estrutura Molecular , Pirimidinas/química , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/químicaRESUMO
Fluorine is a unique atom that imparts distinct properties to bioactive molecules upon incorporation. Herein, we prepare and study fluorinated derivatives of the nanomolar affine peripherally restricted dual CB1R/CB2R agonist; CRA13 and its analogs. Binding affinity evaluation relative to CRA13 proved the stronger binding affinity of compound 7c to CB1R and CB2R by 6.95 and 5.64 folds. Physicochemical properties evaluation proved compound 7c improved lipophilicity profile suggesting some enhanced BBB penetration relative to CRA13. Radiosynthesis of 18F-labeled compound 7c was conducted conveniently affording pure hot ligand. In vivo PET study investigation demonstrated efficient distribution of 18F-labeled compound 7c in peripheral tissues visualizing peripheral CB1R/CB2R generating time-activity-curves showing good standard uptake values. Despite enhanced BBB penetration and increased cannabinoid receptors binding affinity, low brain uptake of 7c was observed. In silico docking study explained the measured binding affinities of compounds 7a-d to CB1R. While most of previous efforts aimed to develop central cannabinoid PET imaging agents, 18F-labeled compound 7c might be a promising agent serving as a universal CB1R/CB2R PET imaging agents for diagnosis and therapy of various diseases correlated with peripheral cannabinoid system. It might also serve as a lead compound for development of PET imaging of peripheral and central cannabinoid systems.
Assuntos
Naftalenos/farmacologia , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Relação Dose-Resposta a Droga , Radioisótopos de Flúor , Halogenação , Humanos , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Relação Estrutura-AtividadeRESUMO
Hybridization of reported weakly active antiproliferative hit 5-amino-4-pyrimidinol derivative with 2-anilino-4-phenoxypyrimidines suggests a series of 2,5-diamino-4-pyrimidinol derivatives as potential antiproliferative agents. Few compounds belonging to the proposed series were reported as CSF1R/DAPK1 inhibitors as anti-tauopathies. However, the correlation between CSF1R/DAPK1 signalling pathways and cancer progression provides motives to reprofile them against cancer therapy. The compounds were synthesised, characterized, and evaluated against M-NFS-60 cells and a kinase panel which bolstered predictions of their antiproliferative activity and suggested the involvement of diverse molecular targets. Compound 6e, the most potent in the series, showed prominent broad-spectrum antiproliferative activity inhibiting the growth of hematological, NSCLC, colon, CNS, melanoma, ovarian, renal, prostate and breast cancers by 84.1, 52.79, 72.15, 66.34, 66.48, 51.55, 55.95, 61.85, and 60.87%, respectively. Additionally, it elicited an IC50 value of 1.97 µM against M-NFS-60 cells and good GIT absorption with Pe value of 19.0 ± 1.1 × 10-6 cm/s (PAMPA-GIT). Molecular docking study for 6e with CSF1R and DAPK1 was done to help to understand the binding mode with both kinases. Collectively, compound 6e could be a potential lead compound for further development of anticancer therapies.
Assuntos
Antineoplásicos/farmacologia , Proteínas Quinases Associadas com Morte Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Quinases Associadas com Morte Celular/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Relação Estrutura-AtividadeRESUMO
EGFR inhibitors are well-known as anticancer agents. Quite differently, we report our effort to develop EGFR inhibitors as anti-inflammatory agents. Pyrimidinamide EGFR inhibitors eliciting low micromolar IC50 and the structurally close non-EGFR inhibitor urea analog were synthesized. Comparing their nitric oxide (NO) production inhibitory activity in peritoneal macrophages and RAW 246.7 macrophages indicated that their anti-inflammatory activity in peritoneal macrophages might be a sequence of EGFR inhibition. Further evaluations proved that compound 4d significantly and dose-dependently inhibits LPS-induced iNOS expression and IL-1ß, IL-6, and TNF-α production via NF-κB inactivation in peritoneal macrophages. Compound 4d might serve as a lead compound for development of a novel class of anti-inflammatory EGFR inhibitors.
Assuntos
Amidas/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Benzamidas/farmacologia , Inflamação/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Amidas/síntese química , Amidas/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Benzamidas/síntese química , Benzamidas/química , Sobrevivência Celular/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Descoberta de Drogas , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Células RAW 264.7 , Relação Estrutura-AtividadeRESUMO
Two series of erlotinib-alkylphospholipid hybrids were prepared and evaluated for their antiproliferative activities against a panel of four cell lines representing lung, breast, liver and skin cancers using erlotinib and miltefosine as reference standards. Amide analogs elicited more enhanced cytotoxic activity than analogous esters. Amide derivatives 8d and 8e exhibited promising broad-spectrum antiproliferative activity and higher efficacy than reference erlotinib and miltefosine. Their cellular GI50 values was in the ranges of 24.7-46.9⯵M and 26.8-43.1⯵M for 8e and 8d respectively. Assay results of the inhibitory activity of the prepared compounds on EGFR kinase reaction and Akt phosphorylation in conjugation with statistical correlation analysis indicated that other mechanisms might contribute to their elicited cytotoxicities. In addition, statistical correlation analysis revealed that mechanisms of elicited cytotoxicities for amide series might be different from ester series. In addition, correlation analysis indicated variations in the mechanisms according to the types of cell line.
Assuntos
Antineoplásicos/farmacologia , Cloridrato de Erlotinib/farmacologia , Fosfolipídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/química , Humanos , Estrutura Molecular , Fosfolipídeos/química , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-AtividadeRESUMO
Sphingomyelins and glycerophospholipids are structurally related phospholipids. Nevertheless, glycerophospholipids analogs are known as antitumor agents while sphingomyelin analogs were reported as cytoprotective agents. Herein, we have addressed the development of 3-deoxysphingomyelin analogs as cytotoxic agents possessing modified sphingobases. Thus, pyrrolidine-based 3-deoxysphingomyelin analogs were synthesized and evaluated against a panel of cell lines representing four major types of cancers. Compounds 3d, 4d and 6d elicited better GI50 values than the FDA approved drug miltefosine. Investigation of their impact on Akt phosphorylation as a possible mechanism for the antiproliferative activity of this class of compounds revealed that these compounds might elicit a concentration-dependent mechanism via inhibition of Akt phosphorylation at the lower concentration. Molecular docking predicted their binding modes to Akt to involve polar head binding to the Pleckstrin homology domain and hydrophobic tail extension into a hydrophobic pocket connecting the Pleckstrin homology domain and the kinase domain. As a whole, the described work suggests compounds 3d, 4d and 6d as promising pyrrolidine-based 3-deoxysphingomyelin analogs for development of novel cancer therapies.
Assuntos
Antineoplásicos/síntese química , Desenho de Fármacos , Pirrolidinas/química , Esfingomielinas/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia , Relação Estrutura-AtividadeRESUMO
Inhibition of IKK-ß (inhibitor of nuclear factor kappa-B kinase subunit beta) has been broadly documentedas a promising approach for treatment of acute and chronic inflammatory diseases, cancer, and autoimmune diseases. Recently, we have identified a novel class of thiazolidine-2,4-diones as structurally novel modulators for IKK-ß. Herein, we report a hit optimization study via analog synthesis strategy aiming to acquire more potent derivative(s), probe the structure activity relationship (SAR), and get reasonable explanations for the elicited IKK-ß inhibitory activities though an in silico docking simulation study. Accordingly, a new series of eighteen thiazolidine-2,4-dione derivatives was rationally designed, synthesized, identified with different spectroscopic techniques and biologically evaluated as noteworthy IKK-ß potential modulators. Successfully, new IKK-ß potent modulators were obtained, including the most potent analog up-to-date 7m with IC50 value of 260â¯nM. A detailed structure activity relationship (SAR) was discussed and a mechanistic study for 7m was carried out indicating its irreversible inhibition mode with IKK-ß (Kinact valueâ¯=â¯0.01 (min-1). Furthermore, the conducted in silico simulation study provided new insights for the binding modes of this novel class of modulators with IKK-ß.
Assuntos
Desenho de Fármacos , Quinase I-kappa B/antagonistas & inibidores , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Tiazolidinedionas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Quinase I-kappa B/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/químicaRESUMO
CRA13; a peripheral dual CB1R/CB2R agonist with clinically proven analgesic properties, infiltrates into CNS producing adverse effects due to central CB1R agonism. Such adverse effects might be circumvented by less lipophilic compounds with attenuated CB1R affinity. Metabolism produces less lipophilic metabolites that might be active metabolites. Some CRA13 oxidative metabolites and their analogues were synthesized as less lipophilic CRA13 analogues. Probing their CB1R and CB2R activity revealed the alcohol metabolite 8c as a more potent and more effective CB2R ligand with attenuated CB1R affinity relative to CRA13. Also, the alcohol analogue 8b and methyl ester 12a possessed enhanced CB2R affinity and reduced CB1R affinity. The CB2R binding affinity of alcohol analogue 8b was similar to CRA13 while that of methyl ester 12a was more potent. In silico study provided insights into the possible molecular interactions that might explain the difference in the elicited biological activity of these compounds.
Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Naftalenos/farmacologia , Receptor CB2 de Canabinoide/agonistas , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/metabolismo , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Naftalenos/química , Naftalenos/metabolismo , Oxirredução , Relação Estrutura-AtividadeRESUMO
The natural product 23-hydroxyursolic acid (23-HUA) is a derivative of ursolic acid, which is known to induce cancer cell apoptosis. However, apoptotic effects and mechanisms of 23-HUA have not been well characterized yet. Herein, we investigated the molecular mechanisms of 23-HUA-induced apoptosis in HL-60 human promyelocytic leukemia cells. 23-HUA-treated HL-60 cells showed apoptotic features including internucleosomal DNA condensation and fragmentation as well as externalization of phosphatidylserine residues. 23-HUA induced a series of mitochondrial events including disruption of mitochondrial membrane potential (ΔΨm), cytochrome c and Smac/DIABLO release and loss of balance between pro-apoptotic and anti-apoptotic Bcl-2 proteins in HL-60 cells. In addition, 23-HUA activated caspase-8, caspase-9 and caspase-3. Pretreatment with a broad caspase inhibitor (z-VAD-fmk), a caspase-3 inhibitor (z-DEVD-fmk), and a caspase-8 inhibitor (z-IETD-fmk) significantly attenuated 23-HUA-induced DNA fragmentation. After 23-HUA-induced apoptosis, proteins expression levels of FasL, Fas and FADD constituting the death-inducing signaling complex (DISC) were upregulated in HL-60 cells. Moreover, transfection with Fas or FADD siRNA significantly blocked 23-HUA-induced DNA fragmentation and caspases activation. Taken together, these findings indicate that 23-HUA induces apoptosis in HL-60 human promyelocytic leukemia cells through formation of DISC and caspase-8 activation leading to loss of ΔΨm and caspase-3 activation.
Assuntos
Apoptose/efeitos dos fármacos , Araliaceae/química , Caspase 8/metabolismo , Leucemia Promielocítica Aguda/patologia , Casca de Planta/química , Caules de Planta/química , Triterpenos/farmacologia , Receptor fas/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Células HL-60 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Triterpenos/química , Triterpenos/isolamento & purificaçãoRESUMO
Searching for hit compounds within the huge chemical space resembles the attempt to find a needle in a haystack. Cheminformatics-guided selection of few representative molecules of a rationally designed virtual combinatorial library is a powerful tool to confront this challenge, speed up hit identification and cut off costs. Herein, this approach has been applied to identify hit compounds with novel scaffolds able to inhibit EGFR kinase. From a generated virtual library, six 4-aryloxy-5-aminopyrimidine scaffold-derived compounds were selected, synthesized and evaluated as hit EGFR inhibitors. 4-Aryloxy-5-benzamidopyrimidines inhibited EGFR with IC50 1.05-5.37⯵M. Cell-based assay of the most potent EGFR inhibitor hit (10ac) confirmed its cytotoxicity against different cancerous cells. In spite of no EGFR, HER2 or VEGFR1 inhibition was elicited by 4-aryloxy-5-(thio)ureidopyrimidine derivatives, cell-based evaluation suggested them as antiproliferative hits acting by other mechanism(s). Molecular docking study provided a plausible explanation of incapability of 4-aryloxy-5-(thio)ureidopyrimidines to inhibit EGFR and suggested a reasonable binding mode of 4-aryloxy-5-benzamidopyrimidines which provides a basis to develop more optimized ligands.
Assuntos
Benzamidas/química , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Benzamidas/metabolismo , Benzamidas/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Relação Estrutura-Atividade , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
We described here the synthesis and biological evaluation of picolinamides and thiazole-2-carboxamides as potential mGluR5 antagonists. We found that a series of thiazole derivatives 6 showed better inhibitory activity against mGluR5. Compounds 6bc and 6bj have been identified as potent antagonists (IC50=274 and 159nM) showing excellent in vitro stability profile. Molecular docking study using the crystal structure of mGluR5 revealed that our compounds 6bc and 6bj fit the allosteric binding site of mavoglurant well.