Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563033

RESUMO

The gastrointestinal (GI) system is highly susceptible to irradiation. Currently, there is no Food and Drug Administration (FDA)-approved medical countermeasures for GI radiation injury. The vitamin E analog gamma-tocotrienol (GT3) is a promising radioprotector in mice and nonhuman primates (NHP). We evaluated GT3-mediated GI recovery in total-body irradiated (TBI) NHPs. Sixteen rhesus macaques were divided into two groups; eight received vehicle and eight GT3 24 h prior to 12 Gy TBI. Proximal jejunum was assessed for structural injuries and crypt survival on day 4 and 7. Apoptotic cell death and crypt cell proliferation were assessed with TUNEL and Ki-67 immunostaining. Irradiation induced significant shortening of the villi and reduced mucosal surface area. GT3 induced an increase in crypt depth at day 7, suggesting that more stem cells survived and proliferated after irradiation. GT3 did not influence crypt survival after irradiation. GT3 treatment caused a significant decline in TUNEL-positive cells at both day 4 (p < 0.03) and 7 (p < 0.0003). Importantly, GT3 induced a significant increase in Ki-67-positive cells at day 7 (p < 0.05). These data suggest that GT3 has radioprotective function in intestinal epithelial and crypt cells. GT3 should be further explored as a prophylactic medical countermeasure for radiation-induced GI injury.


Assuntos
Síndrome Aguda da Radiação , Cromanos , Protetores contra Radiação , Vitamina E , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/prevenção & controle , Animais , Cromanos/uso terapêutico , Modelos Animais de Doenças , Intestinos/patologia , Intestinos/efeitos da radiação , Antígeno Ki-67 , Macaca mulatta , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico , Vitamina E/análogos & derivados , Vitamina E/uso terapêutico
2.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555814

RESUMO

Radiation exposure causes acute damage to hematopoietic and immune cells. To date, there are no radioprotectors available to mitigate hematopoietic injury after radiation exposure. Gamma-tocotrienol (GT3) has demonstrated promising radioprotective efficacy in the mouse and nonhuman primate (NHP) models. We determined GT3-mediated hematopoietic recovery in total-body irradiated (TBI) NHPs. Sixteen rhesus macaques divided into two groups received either vehicle or GT3, 24 h prior to TBI. Four animals in each treatment group were exposed to either 4 or 5.8 Gy TBI. Flow cytometry was used to immunophenotype the bone marrow (BM) lymphoid cell populations, while clonogenic ability of hematopoietic stem cells (HSCs) was assessed by colony forming unit (CFU) assays on day 8 prior to irradiation and days 2, 7, 14, and 30 post-irradiation. Both radiation doses showed significant changes in the frequencies of B and T-cell subsets, including the self-renewable capacity of HSCs. Importantly, GT3 accelerated the recovery in CD34+ cells, increased HSC function as shown by improved recovery of CFU-granulocyte macrophages (CFU-GM) and burst-forming units erythroid (B-FUE), and aided the recovery of circulating neutrophils and platelets. These data elucidate the role of GT3 in hematopoietic recovery, which should be explored as a potential medical countermeasure to mitigate radiation-induced injury to the hematopoietic system.


Assuntos
Células-Tronco Hematopoéticas , Vitamina E , Camundongos , Animais , Macaca mulatta , Vitamina E/farmacologia , Cromanos/farmacologia , Irradiação Corporal Total
3.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673497

RESUMO

Both cell and animal studies have shown that complete or partial deficiency of methionine inhibits tumor growth. Consequently, the potential implementation of this nutritional intervention has recently been of great interest for the treatment of cancer patients. Unfortunately, diet alteration can also affect healthy immune cells such as monocytes/macrophages and their precursor cells in bone marrow. As around half of cancer patients are treated with radiotherapy, the potential deleterious effect of dietary methionine deficiency on immune cells prior to and/or following irradiation needs to be evaluated. Therefore, we examined whether modulation of methionine content alters genetic stability in the murine RAW 264.7 monocyte/macrophage cell line in vitro by chromosomal analysis after 1-month culture in a methionine-deficient or supplemented medium. We also analyzed chromosomal aberrations in the bone marrow cells of CBA/J mice fed with methionine-deficient or supplemented diet for 2 months. While all RAW 264.7 cells revealed a complex translocation involving three chromosomes, three different clones based on the banding pattern of chromosome 9 were identified. Methionine deficiency altered the ratio of the three clones and increased chromosomal aberrations and DNA damage in RAW 264.7. Methionine deficiency also increased radiation-induced chromosomal aberration and DNA damage in RAW 264.7 cells. Furthermore, mice maintained on a methionine-deficient diet showed more chromosomal aberrations in bone marrow cells than those given methionine-adequate or supplemented diets. These findings suggest that caution is warranted for clinical implementation of methionine-deficient diet concurrent with conventional cancer therapy.


Assuntos
Células da Medula Óssea/metabolismo , Aberrações Cromossômicas , Dano ao DNA , Desnutrição/genética , Metionina/deficiência , Animais , Reparo do DNA , Dieta , Macrófagos , Masculino , Desnutrição/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Monócitos , Células RAW 264.7
4.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G439-G450, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961718

RESUMO

Methionine is an essential amino acid needed for a variety of processes in living organisms. Ionizing radiation depletes tissue methionine concentrations and leads to the loss of DNA methylation and decreased synthesis of glutathione. In this study, we aimed to investigate the effects of methionine dietary supplementation in CBA/CaJ mice after exposure to doses ranging from 3 to 8.5 Gy of 137Cs of total body irradiation. We report that mice fed a methionine-supplemented diet (MSD; 19.5 vs. 6.5 mg/kg in a methionine-adequate diet, MAD) developed acute radiation toxicity at doses as low as 3 Gy. Partial body irradiation performed with hindlimb shielding resulted in a 50% mortality rate in MSD-fed mice exposed to 8.5 Gy, suggesting prevalence of radiation-induced gastrointestinal syndrome in the development of acute radiation toxicity. Analysis of the intestinal microbiome demonstrated shifts in the gut ecology, observed along with the development of leaky gut syndrome and bacterial translocation into the liver. Normal gut physiology impairment was facilitated by alterations in the one-carbon metabolism pathway and was exhibited as decreases in circulating citrulline levels mirrored by decreased intestinal mucosal surface area and the number of surviving crypts. In conclusion, we demonstrate that a relevant excess of methionine dietary intake exacerbates the detrimental effects of exposure to ionizing radiation in the small intestine.NEW & NOTEWORTHY Methionine supplementation, instead of an anticipated health-promoting effect, sensitizes mice to gastrointestinal radiation syndrome. Mechanistically, excess of methionine negatively affects intestinal ecology, leading to a cascade of physiological, biochemical, and molecular alterations that impair normal gut response to a clinically relevant genotoxic stressor. These findings speak toward increasing the role of registered dietitians during cancer therapy and the necessity of a solid scientific background behind the sales of dietary supplements and claims regarding their benefits.


Assuntos
Síndrome Aguda da Radiação/etiologia , Suplementos Nutricionais/toxicidade , Intestino Delgado/efeitos dos fármacos , Metionina/toxicidade , Lesões Experimentais por Radiação/etiologia , Síndrome Aguda da Radiação/metabolismo , Síndrome Aguda da Radiação/microbiologia , Síndrome Aguda da Radiação/patologia , Animais , Metilação de DNA/efeitos dos fármacos , Disbiose , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Doses de Radiação , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/microbiologia , Lesões Experimentais por Radiação/patologia , Fatores de Risco , Irradiação Corporal Total
5.
J Biopharm Stat ; 29(2): 348-358, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30352015

RESUMO

The relative potency of one agent to another is commonly represented by the ratio of two quantal response parameters; for example, the LD50 of animals receiving a treatment to the LD50 of control animals, where LD50 is the dose of toxin that is lethal to 50% of animals. Though others have considered interval estimators of LD50, here, we extend Bayesian, bootstrap, likelihood ratio, Fieller's and Wald's methods to estimate intervals for relative potency in a parallel-line assay context. In addition to comparing their coverage probabilities, we also consider their power in two types of dose designs: one assigning treatment and control the same doses vs. one choosing doses for treatment and control to achieve same lethality targets. We explore these methods in realistic contexts of relative potency of radiation countermeasures. For larger experiments (e.g., ≥100 animals), the methods return similar results regardless of the interval estimation method or experiment design. For smaller experiments (e.g., < 60 animals), Wald's method stands out among the others, producing intervals that hold closely to nominal levels and providing more power than the other methods in statistically efficient designs. Using this simple statistical method within a statistically efficient design, researchers can reduce animal numbers.


Assuntos
Protetores contra Radiação/administração & dosagem , Protetores contra Radiação/toxicidade , Projetos de Pesquisa/estatística & dados numéricos , Toxicologia/estatística & dados numéricos , Animais , Teorema de Bayes , Simulação por Computador , Relação Dose-Resposta a Droga , Humanos , Dose Letal Mediana , Razão de Chances , Probabilidade , Toxicologia/métodos
6.
Blood ; 127(15): 1912-22, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26764354

RESUMO

Juvenile myelomonocytic leukemia (JMML) is an aggressive pediatric mixed myelodysplastic/myeloproliferative neoplasm (MDS/MPN). JMML leukemogenesis is linked to a hyperactivated RAS pathway, with driver mutations in the KRAS, NRAS, NF1, PTPN11, or CBL genes. Previous murine models demonstrated how those genes contributed to the selective hypersensitivity of JMML cells to granulocyte macrophage-colony-stimulating factor (GM-CSF), a unifying characteristic in the disease. However, it is unclear what causes the early death in children with JMML, because transformation to acute leukemia is rare. Here, we demonstrate that loss of Pten (phosphatase and tensin homolog) protein at postnatal day 8 in mice harboring Nf1 haploinsufficiency results in an aggressive MPN with death at a murine prepubertal age of 20 to 35 days (equivalent to an early juvenile age in JMML patients). The death in the mice was due to organ infiltration with monocytes/macrophages. There were elevated activities of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) in cells at physiological concentrations of GM-CSF. These were more pronounced in mice with Nf1 haploinsufficiency than in littermates with wild-type Nf1,but this model is insufficient to cause cells to be GM-CSF hypersensitive. This new model represents a murine MPN model with features of a pediatric unclassifiable mixed MDS/MPN and mimics many clinical manifestations of JMML in terms of age of onset, aggressiveness, and organ infiltration with monocytes/macrophages. Our data suggest that the timing of the loss of PTEN protein plays a critical role in determining the disease severity in myeloid malignancies. This model may be useful for studying the pathogenesis of pediatric diseases with alterations in the Ras pathway.


Assuntos
Transtornos Mieloproliferativos/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Animais , Transplante de Medula Óssea , Movimento Celular , Separação Celular , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/metabolismo , Transtornos Mieloproliferativos/metabolismo , Neurofibromina 1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco/citologia , Fatores de Tempo , Proteínas ras/metabolismo
7.
PLoS Genet ; 11(12): e1005675, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26684013

RESUMO

Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5' end resection near the fork junction, which permits 3' single strand invasion of a homologous template for fork restart. This 5' end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5' DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5' overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ.


Assuntos
DNA Helicases/genética , Endodesoxirribonucleases/genética , Instabilidade Genômica , Recombinação Homóloga/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Reparo de DNA por Recombinação/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Proteínas de Escherichia coli/genética , Regulação da Expressão Gênica , Células HEK293 , Histonas/genética , Humanos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
8.
Int J Mol Sci ; 18(7)2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28677663

RESUMO

Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons are the major repetitive elements in mammalian genomes. LINE-1s are well-accepted as driving forces of evolution and critical regulators of the expression of genetic information. Alterations in LINE-1 DNA methylation may lead to its aberrant activity and are reported in virtually all human cancers and in experimental carcinogenesis. In this study, we investigated the endogenous DNA methylation status of the 5' untranslated region (UTR) of LINE-1 elements in the bone marrow hematopoietic stem cells (HSCs), hematopoietic progenitor cells (HPCs), and mononuclear cells (MNCs) in radioresistant C57BL/6J and radiosensitive CBA/J mice and in response to ionizing radiation (IR). We demonstrated that basal levels of DNA methylation within the 5'-UTRs of LINE-1 elements did not differ significantly between the two mouse strains and were negatively correlated with the evolutionary age of LINE-1 elements. Meanwhile, the expression of LINE-1 elements was higher in CBA/J mice. At two months after irradiation to 0.1 or 1 Gy of 137Cs (dose rate 1.21 Gy/min), significant decreases in LINE-1 DNA methylation in HSCs were observed in prone to radiation-induced carcinogenesis CBA/J, but not C57BL/6J mice. At the same time, no residual DNA damage, increased ROS, or changes in the cell cycle were detected in HSCs of CBA/J mice. These results suggest that epigenetic alterations may potentially serve as driving forces of radiation-induced carcinogenesis; however, future studies are needed to demonstrate the direct link between the LINE-1 DNA hypomethylation and radiation carcinogenesis.


Assuntos
Metilação de DNA/efeitos da radiação , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos da radiação , Elementos Nucleotídeos Longos e Dispersos , Radiação Ionizante , Animais , Dano ao DNA , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/efeitos da radiação , Hematopoese/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Retroelementos , Especificidade da Espécie
9.
Pharm Res ; 33(9): 2117-25, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27216753

RESUMO

PURPOSE: Ionizing radiation (IR) generates reactive oxygen species (ROS), which cause DNA double-strand breaks (DSBs) that are responsible for cytogenetic alterations. Because antioxidants are potent ROS scavengers, we determined whether the vitamin E isoform γ-tocotrienol (GT3), a radio-protective multifunctional dietary antioxidant, can suppress IR-induced cytogenetic damage. METHODS: We measured DSB formation in irradiated primary human umbilical vein endothelial cells (HUVECs) by quantifying the formation of γ-H2AX foci. Chromosomal aberrations (CAs) were analyzed in irradiated HUVECs and in the bone marrow cells of irradiated mice by conventional and fluorescence-based chromosome painting techniques. Gene expression was measured in HUVECs with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). RESULTS: GT3 pretreatment reduced DSB formation in HUVECS, and also decreased CAs in HUVECs and mouse bone marrow cells after irradiation. Moreover, GT3 increased expression of the DNA-repair gene RAD50 and attenuated radiation-induced RAD50 suppression. CONCLUSIONS: GT3 attenuates radiation-induced cytogenetic damage, possibly by affecting RAD50 expression. GT3 should be explored as a therapeutic to reduce the risk of developing genetic diseases after radiation exposure.


Assuntos
Aberrações Cromossômicas/efeitos dos fármacos , Lesões por Radiação/tratamento farmacológico , Tocotrienóis/administração & dosagem , Vitamina E/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Células da Medula Óssea/efeitos dos fármacos , Células Cultivadas , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA/genética , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Radiação Ionizante
10.
Environ Res ; 150: 470-481, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27419368

RESUMO

Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2'-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5'-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR.


Assuntos
Metilação de DNA/efeitos da radiação , Elementos Nucleotídeos Longos e Dispersos/genética , Radiação Ionizante , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Decitabina , Histonas/metabolismo , Elementos Nucleotídeos Longos e Dispersos/fisiologia , Pulmão/metabolismo , Pulmão/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7
11.
Tetrahedron ; 72(27-28): 4001-4006, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27773949

RESUMO

A group of side chain partially saturated tocotrienol analogues, namely tocoflexols, have been previously designed in an effort to improve the pharmacokinetic properties of tocotrienols. (2R,8'S,3'E,11'E)-δ-Tocodienol (1) was predicted to be a high value tocoflexol for further pharmacological evaluation. We now report here an efficient 8-step synthetic route to compound 1 utilizing naturally-occurring δ-tocotrienol as a starting material (24% total yield). The key step in the synthesis is oxidative olefin cleavage of δ-tocotrienol to afford the chroman core of 1 with retention of chirality at the C-2 stereocenter.

12.
Int J Mol Sci ; 17(5)2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27153057

RESUMO

The hazard of ionizing radiation exposure due to nuclear accidents or terrorist attacks is ever increasing. Despite decades of research, still, there is a shortage of non-toxic, safe and effective medical countermeasures for radiological and nuclear emergency. To date, the U.S. Food and Drug Administration (U.S. FDA) has approved only two growth factors, Neupogen (granulocyte colony-stimulating factor (G-CSF), filgrastim) and Neulasta (PEGylated G-CSF, pegfilgrastim) for the treatment of hematopoietic acute radiation syndrome (H-ARS) following the Animal Efficacy Rule. Promising radioprotective efficacy results of γ-tocotrienol (GT3; a member of the vitamin E family) in the mouse model encouraged its further evaluation in the nonhuman primate (NHP) model. These studies demonstrated that GT3 significantly aided the recovery of radiation-induced neutropenia and thrombocytopenia compared to the vehicle controls; these results particularly significant after exposure to 5.8 or 6.5 Gray (Gy) whole body γ-irradiation. The stimulatory effect of GT3 on neutrophils and thrombocytes (platelets) was directly and positively correlated with dose; a 75 mg/kg dose was more effective compared to 37.5 mg/kg. GT3 was also effective against 6.5 Gy whole body γ-irradiation for improving neutrophils and thrombocytes. Moreover, a single administration of GT3 without any supportive care was equivalent, in terms of improving hematopoietic recovery, to multiple doses of Neupogen and two doses of Neulasta with full supportive care (including blood products) in the NHP model. GT3 may serve as an ultimate radioprotector for use in humans, particularly for military personnel and first responders. In brief, GT3 is a promising radiation countermeasure that ought to be further developed for U.S. FDA approval for the ARS indication.


Assuntos
Síndrome Aguda da Radiação/tratamento farmacológico , Cromanos/uso terapêutico , Protetores contra Radiação/uso terapêutico , Vitamina E/análogos & derivados , Síndrome Aguda da Radiação/prevenção & controle , Animais , Plaquetas/efeitos dos fármacos , Cromanos/administração & dosagem , Cromanos/farmacologia , Citocinas/genética , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Neutrófilos/efeitos dos fármacos , Protetores contra Radiação/administração & dosagem , Protetores contra Radiação/farmacologia , Vitamina E/administração & dosagem , Vitamina E/farmacologia , Vitamina E/uso terapêutico
13.
Int J Mol Sci ; 17(11)2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27869747

RESUMO

Statins; a class of routinely prescribed cholesterol-lowering drugs; inhibit 3-hydroxy-3-methylglutaryl-coenzymeA reductase (HMGCR) and strongly induce endothelial thrombomodulin (TM); which is known to have anti-inflammatory; anti-coagulation; anti-oxidant; and radioprotective properties. However; high-dose toxicity limits the clinical use of statins. The vitamin E family member gamma-tocotrienol (GT3) also suppresses HMGCR activity and induces TM expression without causing significant adverse side effects; even at high concentrations. To investigate the synergistic effect of statins and GT3 on TM; a low dose of atorvastatin and GT3 was used to treat human primary endothelial cells. Protein-level TM expression was measured by flow cytometry. TM functional activity was determined by activated protein C (APC) generation assay. Expression of Kruppel-like factor 2 (KLF2), one of the key transcription factors of TM, was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). TM expression increased in a dose-dependent manner after both atorvastatin and GT3 treatment. A combined treatment of a low-dose of atorvastatin and GT3 synergistically up-regulated TM expression and functional activity. Finally; atorvastatin and GT3 synergistically increased KLF2 expression. These findings suggest that combined treatment of statins with GT3 may provide significant health benefits in treating a number of pathophysiological conditions; including inflammatory and cardiovascular diseases.


Assuntos
Cromanos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Trombomodulina/genética , Vitamina E/análogos & derivados , Antioxidantes/farmacologia , Atorvastatina/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Trombomodulina/metabolismo , Regulação para Cima/efeitos dos fármacos , Vitamina E/farmacologia
14.
BMC Genomics ; 16: 984, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26589571

RESUMO

BACKGROUND: Although extensive studies have investigated radiation-induced injuries in particular gastrointestinal (GI) segments, a systematic comparison among the different segments on the basis of mode, magnitude and mechanism has not been reported. Here, a comparative study of segment-specific molecular and cellular responses was performed on jejunum, ileum and colon obtained at three time points (4, 7 and 12 days after irradiation) from non-human primate (Rhesus macaque) models exposed to 6.7 Gy or 7.4 Gy total body irradiation (TBI). RESULTS: Pathway analysis on the gene expression profiles identified radiation-induced time-, dose- and segment-dependent activation of tumor necrosis factor α (TNFα) cascade, tight junction, apoptosis, cell cycle control/DNA damage repair and coagulation system signaling. Activation of these signaling pathways suggests that colon sustained the severest mucosal barrier disruption and inflammation, and jejunum the greatest DNA damage, apoptosis and endothelial dysfunction. These more pronounced alterations correlate with the high incidence of macroscopic pathologies that are observed in the colon after TBI. Compared to colon and jejunum, ileum was resistant to radiation injury. In addition to the identification a marked increase of TNFα cascade, this study also identified radiation induced strikingly up-regulated tight junction gene CLDN2 (196-fold after 7.4-Gy TBI), matrix degradation genes such as MMP7 (increased 11- and 41-fold after 6.7-Gy and 7.4-Gy TBI), and anoikis mediated gene EDA2R that mediate mucosal shedding and barrier disruption. CONCLUSIONS: This is the first systematic comparative study of the molecular and cellular responses to radiation injury in jejunum, ileum and colon. The strongest activation of TNFα cascades and the striking up-regulation of its down-stream matrix-dissociated genes suggest that TNFα modulation could be a target for mitigating radiation-induced mucosal barrier disruption.


Assuntos
Colo/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Íleo/metabolismo , Jejuno/metabolismo , Transcriptoma , Irradiação Corporal Total , Animais , Anoikis/genética , Apoptose/genética , Ciclo Celular , Análise por Conglomerados , Colo/imunologia , Íleo/imunologia , Imunidade nas Mucosas/genética , Imunidade nas Mucosas/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Jejuno/imunologia , Macaca mulatta , Masculino , Doses de Radiação , Lesões Experimentais por Radiação , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos da radiação , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Blood ; 121(21): 4359-65, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23568489

RESUMO

Chromosomal translocations are common contributors to malignancy, yet little is known about the precise molecular mechanisms by which they are generated. Sequencing translocation junctions in acute leukemias revealed that the translocations were likely mediated by a DNA double-strand break repair pathway termed nonhomologous end-joining (NHEJ). There are major 2 types of NHEJ: (1) the classical pathway initiated by the Ku complex, and (2) the alternative pathway initiated by poly ADP-ribose polymerase 1 (PARP1). Recent reports suggest that classical NHEJ repair components repress translocations, whereas alternative NHEJ components were required for translocations. The rate-limiting step for initiation of alternative NHEJ is the displacement of the Ku complex by PARP1. Therefore, we asked whether PARP1 inhibition could prevent chromosomal translocations in 3 translocation reporter systems. We found that 2 PARP1 inhibitors or repression of PARP1 protein expression strongly repressed chromosomal translocations, implying that PARP1 is essential for this process. Finally, PARP1 inhibition also reduced both ionizing radiation-generated and VP16-generated translocations in 2 cell lines. These data define PARP1 as a critical mediator of chromosomal translocations and raise the possibility that oncogenic translocations occurring after high-dose chemotherapy or radiation could be prevented by treatment with a clinically available PARP1 inhibitor.


Assuntos
Leucemia/genética , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/fisiologia , Translocação Genética/genética , Translocação Genética/fisiologia , Doença Aguda , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Indóis/farmacologia , Leucemia/tratamento farmacológico , Leucemia/prevenção & controle , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , RNA Interferente Pequeno/genética , Translocação Genética/efeitos dos fármacos
16.
J Proteome Res ; 13(6): 3065-74, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24824572

RESUMO

Although radiation-induced tissue-specific injury is well documented, the underlying molecular changes resulting in organ dysfunction and the consequences thereof on overall metabolism and physiology have not been elucidated. We previously reported the generation and characterization of a transgenic mouse strain that ubiquitously overexpresses Gfrp (GTPH-1 feedback regulatory protein) and exhibits higher oxidative stress, which is a possible result of decreased tetrahydrobiopterin (BH4) bioavailability. In this study, we report genotype-dependent changes in the metabolic profiles of liver tissue after exposure to nonlethal doses of ionizing radiation. Using a combination of untargeted and targeted quantitative mass spectrometry, we report significant accumulation of metabolites associated with oxidative stress, as well as the dysregulation of lipid metabolism in transgenic mice after radiation exposure. The radiation stress seems to exacerbate lipid peroxidation and also results in higher expression of genes that facilitate liver fibrosis, in a manner that is dependent on the genetic background and post-irradiation time interval. These findings suggest the significance of Gfrp in regulating redox homeostasis in response to stress induced by ionizing radiation affecting overall physiology.


Assuntos
Proteínas de Transporte/genética , Cirrose Hepática/metabolismo , Fígado/metabolismo , Metaboloma , Estresse Oxidativo , Lesões Experimentais por Radiação/metabolismo , Animais , Proteínas de Transporte/biossíntese , Feminino , Metabolismo dos Lipídeos/efeitos da radiação , Peroxidação de Lipídeos , Fígado/efeitos da radiação , Cirrose Hepática/etiologia , Masculino , Metabolômica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Radiação Ionizante , Transdução de Sinais
17.
Dig Dis Sci ; 59(11): 2693-703, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24848354

RESUMO

BACKGROUND: Mast cells and neuroimmune interactions regulate the severity of intestinal radiation mucositis, a dose-limiting toxicity during radiation therapy of abdominal malignancies. AIM: Because endocannabinoids (eCB) regulate intestinal inflammation, we investigated the effect of the cannabimimetic, palmitoylethanolamide (PEA), in a mast competent (+/+) and mast cell-deficient (Ws/Ws) rat model. METHODS: Rats underwent localized, fractionated intestinal irradiation, and received daily injections with vehicle or PEA from 1 day before until 2 weeks after radiation. Intestinal injury was assessed noninvasively by luminol bioluminescence, and, at 2 weeks, by histology, morphometry, and immunohistochemical analysis, gene expression analysis, and pathway analysis. RESULTS: Compared with +/+ rats, Ws/Ws rats sustained more intestinal structural injury (p = 0.01), mucosal damage (p = 0.02), neutrophil infiltration (p = 0.0003), and collagen deposition (p = 0.004). PEA reduced structural radiation injury (p = 0.02), intestinal wall thickness (p = 0.03), collagen deposition (p = 0.03), and intestinal inflammation (p = 0.02) in Ws/Ws rats, but not in +/+ rats. PEA inhibited mast cell-derived cellular immune response and anti-inflammatory IL-6 and IL-10 signaling and activated the prothrombin pathway in +/+ rats. In contrast, while PEA suppressed nonmast cell-derived immune responses, it increased anti-inflammatory IL-10 and IL-6 signaling and decreased activation of the prothrombin pathway in Ws/Ws rats. CONCLUSIONS: These data demonstrate that the absence of mast cells exacerbate radiation enteropathy by mechanisms that likely involve the coagulation system, anti-inflammatory cytokine signaling, and the innate immune system; and that these mechanisms are regulated by PEA in a mast cell-dependent manner. The eCB system should be explored as target for mitigating intestinal radiation injury.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides/farmacologia , Etanolaminas/farmacologia , Mastócitos/efeitos dos fármacos , Mastócitos/efeitos da radiação , Mucosite/prevenção & controle , Ácidos Palmíticos/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Amidas , Animais , Agonistas de Receptores de Canabinoides/uso terapêutico , Endocanabinoides/uso terapêutico , Ensaio de Imunoadsorção Enzimática/métodos , Etanolaminas/uso terapêutico , Regulação da Expressão Gênica , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos da radiação , Masculino , Mucosite/etiologia , Ácidos Palmíticos/uso terapêutico , Ratos , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
18.
Drug Dev Res ; 75(1): 10-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24648045

RESUMO

There is a pressing need to develop safe and effective radioprotector/radiomitigator agents for use in accidental or terrorist-initiated radiological emergencies. Naturally occurring vitamin E family constituents, termed tocols, that include the tocotrienols, are known to have radiation-protection properties. These agents, which work through multiple mechanisms, are promising radioprotectant agents having minimal toxicity. Although α-tocopherol (AT) is the most commonly studied form of vitamin E, the tocotrienols are more potent than AT in providing radioprotection and radiomitigation. Unfortunately, despite their very significant radioprotectant activity, tocotrienols have very short plasma half-lives and require dosing at very high levels to achieve necessary therapeutic benefits. Thus, it would be highly desirable to develop new vitamin E analogues with improved pharmacokinetic properties, specifically increased elimination half-life and increased area under the plasma level versus time curve. The short elimination half-life of the tocotrienols is related to their low affinity for the α-tocopherol transfer protein (ATTP), the protein responsible for maintaining the plasma level of the tocols. Tocotrienols have less affinity for ATTP than does AT, and thus have a longer residence time in the liver, putting them at higher risk for metabolism and biliary excretion. We hypothesized that the low-binding affinity of tocotrienols to ATTP is due to the relatively more rigid tail structure of the tocotrienols in comparison with that of the tocopherols. Therefore, compounds with a more flexible tail would have better binding to ATTP and consequently would have longer elimination half-life and, consequently, an increased exposure to drug, as measured by area under the plasma drug level versus time curve (AUC). This represents an enhanced residence of drug in the systemic circulation. Based on this hypothesis, we developed a new class of vitamin E analogues, the tocoflexols, which maintain the superior bioactivity of the tocotrienols with the potential to achieve the longer half-life and larger AUC of the tocopherols.


Assuntos
Proteínas de Transporte/metabolismo , Fígado/metabolismo , Protetores contra Radiação/farmacocinética , Tocotrienóis/farmacocinética , Vitamina E/análogos & derivados , Vitamina E/farmacocinética , Animais , Sítios de Ligação , Disponibilidade Biológica , Desenho de Fármacos , Meia-Vida , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ratos , Ratos Wistar
19.
Sci Rep ; 14(1): 5757, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459144

RESUMO

Despite remarkable scientific progress over the past six decades within the medical arts and in radiobiology in general, limited radiation medical countermeasures (MCMs) have been approved by the United States Food and Drug Administration for the acute radiation syndrome (ARS). Additional effort is needed to develop large animal models for improving the prediction of clinical safety and effectiveness of MCMs for acute and delayed effects of radiation in humans. Nonhuman primates (NHPs) are considered the animal models that reproduce the most appropriate representation of human disease and are considered the gold standard for drug development and regulatory approval. The clinical and histopathological effects of supralethal, total- or partial-body irradiations (12 Gy) of NHPs were assessed, along with possible protective actions of a promising radiation MCM, gamma-tocotrienol (GT3). Results show that these supralethal radiation exposures induce severe injuries that manifest both clinically as well as pathologically, as evidenced by the noted functionally crippling lesions within various major organ systems of experimental NHPs. The MCM, GT3, has limited radioprotective efficacy against such supralethal radiation doses.


Assuntos
Síndrome Aguda da Radiação , Cromanos , Contramedidas Médicas , Protetores contra Radiação , Vitamina E/análogos & derivados , Animais , Estados Unidos , Humanos , Vitamina E/farmacologia , Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/patologia , Modelos Animais de Doenças , Protetores contra Radiação/farmacologia , Macaca mulatta
20.
Radiat Res ; 201(1): 55-70, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059553

RESUMO

Currently, no radioprotectors have been approved to mitigate hematopoietic injury after exposure to ionizing radiation. Acute ionizing radiation results in damage to both hematopoietic and immune system cells. Pre-exposure prophylactic agents are needed for first responders and military personnel. In this study, the ability of gamma-tocotrienol (GT3), a promising radioprotector and antioxidant, to ameliorate partial-body radiation-induced damage to the hematopoietic compartment was evaluated in a nonhuman primate (NHP) model. A total of 15 rhesus NHPs were divided into two groups, and were administered either GT3 or vehicle 24 h prior to 4 or 5.8 Gy partial-body irradiation (PBI), with 5% bone marrow (BM) sparing. Each group consisted of four NHPs, apart from the vehicle-treated group exposed to 5.8 Gy, which had only three NHPs. BM samples were collected 8 days prior to irradiation in addition to 2, 7, 14, and 30 days postirradiation. To assess the clonogenic ability of hematopoietic stem and progenitor cells (HSPCs), colony forming unit (CFU) assays were performed, and lymphoid cells were immunophenotyped using flow cytometry. As a result of GT3 treatment, an increase in HSPC function was evident by an increased recovery of CFU-granulocyte macrophages (CFU-GM). Additionally, GT3 treatment was shown to increase the percentage of CD34+ cells, including T and NK-cell subsets. Our data further affirm GT3's role in hematopoietic recovery and suggest the need for its further development as a prophylactic radiation medical countermeasure.


Assuntos
Cromanos , Protetores contra Radiação , Animais , Macaca mulatta , Protetores contra Radiação/farmacologia , Vitamina E/farmacologia , Medula Óssea/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA