Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Bot ; 109(6): 939-951, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35678538

RESUMO

PREMISE: Chaetopeltidales is a poorly characterized order in the Chlorophyceae, with only two plastid and no mitochondrial genomes published. Here we describe a new taxon in Chaetopeltidales, Gormaniella terricola gen. et sp. nov. and characterize both of its organellar genomes. METHODS: Gormaniella terricola was inadvertently isolated from a surface-sterilized hornwort thallus. Light microscopy was used to characterize its vegetative morphology. Organellar genomes were assembled, annotated, and analyzed using a variety of software packages. RESULTS: The mitochondrial genome (66,927 bp) represents the first complete mitochondrial genome published for Chaetopeltidales. The chloroplast genome, measuring 428,981 bp, is one of the largest plastid genomes published to date and shares this large size and an incredible number of short, dispersed repeats with the other sequenced chloroplast genomes in Chaetopeltidales. Despite these shared features, the chloroplast genomes of Chaetopeltidales appear to be highly rearranged when compared to one another, with numerous inversions, translocations, and duplications, suggesting a particularly dynamic chloroplast genome. Both the chloroplast and mitochondrial genomes of G. terricola contain a number of mobile group I and group II introns, which appear to have invaded separately. Three of the introns within the mitochondrial genome encode homing endonucleases that are phylogenetically nested within those found in fungi, rather than algae, suggesting a possible case of horizontal gene transfer. CONCLUSIONS: These results help to shed light on a poorly understood group of algae and their unusual organellar genomes, raising additional questions about the unique patterns of genome evolution within Chaetopeltidales.


Assuntos
Clorofíceas , Genoma de Cloroplastos , Genoma Mitocondrial , Genomas de Plastídeos , Cloroplastos , Evolução Molecular , Genoma de Cloroplastos/genética , Genoma Mitocondrial/genética , Íntrons , Filogenia
2.
Am J Bot ; 108(9): 1731-1744, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34533221

RESUMO

PREMISE: Nitrogen-fixing endosymbioses with cyanobacteria have evolved independently in five very different plant lineages. Expanding knowledge of these symbioses promises to improve the understanding of symbiosis evolution and broaden the toolkit for agricultural engineering to reduce artificial fertilizer use. Here we focused on hornworts, a bryophyte lineage in which all members host cyanobacteria, and investigated factors shaping the diversity of their cyanobiont communities. METHODS: We sampled hornworts and adjacent soils in upstate New York throughout the hornwort growing season. We included all three sympatric hornwort species in the area, allowing us to directly compare partner selectivity. To profile cyanobacteria communities, we established a metabarcoding protocol targeting rbcL-X with PacBio long reads. RESULTS: The hornwort cyanobionts detected were phylogenetically diverse, including clades that do not contain other known plant symbionts. We found significant overlap between hornwort cyanobionts and soil cyanobacteria, a pattern not previously reported in other plant-cyanobacteria symbioses. Cyanobiont communities differed between host plants only centimeters apart, but we did not detect an effect of sampling time or host species on the cyanobacterial community structure. CONCLUSIONS: This study expands the phylogenetic diversity of known symbiotic cyanobacteria. Our analyses suggest that hornwort cyanobionts have a tight connection to the soil background, and we found no evidence that time within growing season, host species, or distance at the scale of meters strongly govern cyanobacteria community assembly. This study provides a critical foundation for further study of the ecology, evolution, and interaction dynamics of plant-cyanobacteria symbiosis.


Assuntos
Anthocerotophyta , Briófitas , Cianobactérias , Cianobactérias/genética , Filogenia , Simbiose
3.
New Phytol ; 218(3): 1217-1232, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29411387

RESUMO

Fungal symbioses are ubiquitous in plants, but their effects have mostly been studied in seed plants. This study aimed to assess the diversity of fungal endophyte effects in a bryophyte and identify factors contributing to the variability of outcomes in these interactions. Fungal endophyte cultures and axenic liverwort clones were isolated from wild populations of the liverwort, Marchantia polymorpha. These collections were combined in a gnotobiotic system to test the effects of fungal isolates on the growth rates of hosts under laboratory conditions. Under the experimental conditions, fungi isolated from M. polymorpha ranged from aggressively pathogenic to strongly growth-promoting, but the majority of isolates caused no detectable change in host growth. Growth promotion by selected fungi depended on nutrient concentrations and was inhibited by coinoculation with multiple fungi. The M. polymorpha endophyte system expands the resources for this model liverwort. The experiments presented here demonstrate a wealth of diversity in fungal interactions even in a host reported to lack standard mycorrhizal symbiosis. In addition, they show that some known pathogens of vascular plants live in M. polymorpha and can confer benefits to this nonvascular host. This highlights the importance of studying endophyte effects across the plant tree of life.


Assuntos
Endófitos/fisiologia , Fungos/fisiologia , Marchantia/microbiologia , Marchantia/crescimento & desenvolvimento , Filogenia , Xylariales/fisiologia
4.
Am J Bot ; 104(10): 1581-1595, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29885216

RESUMO

PREMISE OF THE STUDY: The California Floristic Province (CA-FP) is a unique and diverse region of floral endemism, yet the timing and nature of divergence and diversification of many lineages remain underexplored. We seek to elucidate the evolutionary history of the red oaks of the CA-FP, the Agrifoliae. METHODS: We collected PstI-associated RAD-seq data as well as morphometrics from individuals of the four species across their ranges, including varieties and hybrids. Phylogeny and divergence times were estimated. We analyzed morphological differentiation in over 70 plants using PCA and assessed species delimitation and admixture using genotype clustering analysis in over 40 plants. KEY RESULTS: We find that the Agrifoliae are monophyletic and sister to all other red oak species. Within the Agrifoliae, all species are supported, with Quercus kelloggii sister to a clade of subevergreen taxa: (Quercus agrifolia - (Q. parvula + Q. wislizeni)). Molecular and morphometric analyses are equivocal for named varieties. Notably, Q. parvula var. tamalpaisensis appears to be part of a hybrid swarm between Q. parvula and Q. wislizeni. Dating estimates were concordant with previous hypotheses and geological evidence, with diversification occurring between 10 and 20 million years ago. CONCLUSIONS: The Agrifoliae represent a geographically discrete, early-diverging red oak lineage that diversified during the period of drying and warming associated with Sierran uplift during the middle Miocene. Molecular differentiation within the clade supports the current taxonomy, including an east-west species level pattern (Q. parvula and Q. wislizeni) and north-south intraspecific patterns to some degree, although the latter require additional study.


Assuntos
Genética Populacional , Quercus/genética , Evolução Biológica , California , Análise por Conglomerados , Genótipo , Filogenia
5.
Front Plant Sci ; 13: 912080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755661

RESUMO

The genus Dendrolycopodium (Lycopodiaceae) includes four to five species across North America and East Asia. Species identification in Dendrolycopodium is difficult due to limited or inconsistent characters. In addition, plants with intermediate morphologies regularly occur, potentially indicative of interspecific hybridization. To determine the species relationships in Dendrolycopodium and investigate the existence of hybrids, we generated a draft genome assembly for D. obscurum and carried out double-digest restriction-site associated DNA sequencing (RADSeq) on 86 Dendrolycopodium specimens. Our sampling includes all the described species and 11 individuals with intermediate morphology. We find that the genus can be divided into four clades that largely correspond to the described taxa, as well as evidence of interspecific hybridization. Within these clades, our STRUCTURE analysis suggests that there are multiple finer subgroups, with evidence of hybridization and introgression between these subgroups. Given the limited availability of specimens collected from Asia, the status of the various Asian species remains uncertain and will require further study. In summary, our study confirms several hybrid relationships in Dendrolycopodium and provides a clear phylogenetic framework for future taxonomic revision.

6.
Genome Biol Evol ; 13(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34665222

RESUMO

Members of eustigmatophyte algae, especially Nannochloropsis and Microchloropsis, have been tapped for biofuel production owing to their exceptionally high lipid content. Although extensive genomic, transcriptomic, and synthetic biology toolkits have been made available for Nannochloropsis and Microchloropsis, very little is known about other eustigmatophytes. Here we present three near-chromosomal and gapless genome assemblies of Monodopsis strains C73 and C141 (60 Mb) and Vischeria strain C74 (106 Mb), which are the sister groups to Nannochloropsis and Microchloropsis in the order Eustigmatales. These genomes contain unusually high percentages of simple repeats, ranging from 12% to 21% of the total assembly size. Unlike Nannochloropsis and Microchloropsis, long interspersed nuclear element repeats are abundant in Monodopsis and Vischeria and might constitute the centromeric regions. We found that both mevalonate and nonmevalonate pathways for terpenoid biosynthesis are present in Monodopsis and Vischeria, which is different from Nannochloropsis and Microchloropsis that have only the latter. Our analysis further revealed extensive spliced leader trans-splicing in Monodopsis and Vischeria at 36-61% of genes. Altogether, the high-quality genomes of Monodopsis and Vischeria not only serve as the much-needed outgroups to advance Nannochloropsis and Microchloropsis research, but also shed new light on the biology and evolution of eustigmatophyte algae.


Assuntos
Estramenópilas , Genoma , Genômica , Estramenópilas/genética , Transcriptoma
7.
Curr Biol ; 31(13): 2857-2867.e4, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33989529

RESUMO

Cyanobacteria have played pivotal roles in Earth's geological history, especially during the rise of atmospheric oxygen. However, our ability to infer the early transitions in Cyanobacteria evolution has been limited by their extremely lopsided tree of life-the vast majority of extant diversity belongs to Phycobacteria (or "crown Cyanobacteria"), while its sister lineage, Gloeobacteria, is depauperate and contains only two closely related species of Gloeobacter and a metagenome-assembled genome. Here, we describe a new cultured member of Gloeobacteria, Anthocerotibacter panamensis, isolated from a tropical hornwort. Anthocerotibacter diverged from Gloeobacter over 1.4 Ga ago and has low 16S rDNA identities with environmental samples. Our ultrastructural, physiological, and genomic analyses revealed that this species possesses a unique combination of traits that are exclusively shared with either Gloeobacteria or Phycobacteria. For example, similar to Gloeobacter, it lacks thylakoids and circadian clock genes, but the carotenoid biosynthesis pathway is typical of Phycobacteria. Furthermore, Anthocerotibacter has one of the most reduced gene sets for photosystems and phycobilisomes among Cyanobacteria. Despite this, Anthocerotibacter is capable of oxygenic photosynthesis under a wide range of light intensities, albeit with much less efficiency. Given its key phylogenetic position, distinct trait combination, and availability as a culture, Anthocerotibacter opens a new window to further illuminate the dawn of oxygenic photosynthesis.


Assuntos
Cianobactérias , Tilacoides , Cianobactérias/genética , Oxigênio/metabolismo , Fotossíntese/fisiologia , Filogenia , Tilacoides/metabolismo
8.
Genome Biol Evol ; 11(7): 1959-1964, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31243438

RESUMO

Plant endosymbiosis with nitrogen-fixing cyanobacteria has independently evolved in diverse plant lineages, offering a unique window to study the evolution and genetics of plant-microbe interaction. However, very few complete genomes exist for plant cyanobionts, and therefore little is known about their genomic and functional diversity. Here, we present four complete genomes of cyanobacteria isolated from bryophytes. Nanopore long-read sequencing allowed us to obtain circular contigs for all the main chromosomes and most of the plasmids. We found that despite having a low 16S rRNA sequence divergence, the four isolates exhibit considerable genome reorganizations and variation in gene content. Furthermore, three of the four isolates possess genes encoding vanadium (V)-nitrogenase (vnf), which is uncommon among diazotrophs and has not been previously reported in plant cyanobionts. In two cases, the vnf genes were found on plasmids, implying possible plasmid-mediated horizontal gene transfers. Comparative genomic analysis of vnf-containing cyanobacteria further identified a conserved gene cluster. Many genes in this cluster have not been functionally characterized and would be promising candidates for future studies to elucidate V-nitrogenase function and regulation.


Assuntos
Cianobactérias/genética , Família Multigênica/genética , Nitrogenase/genética , Nitrogenase/classificação , Filogenia , Plasmídeos/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA