Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(13): 8014-8129, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38842266

RESUMO

This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.

2.
Curr Issues Mol Biol ; 45(10): 8152-8172, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37886958

RESUMO

The spatial organization of euchromatin (EC) and heterochromatin (HC) appears as a cell-type specific network, which seems to have an impact on gene regulation and cell fate. The spatial organization of cohesin should thus also be characteristic for a cell type since it is involved in a TAD (topologically associating domain) formation, and thus in gene regulation or DNA repair processes. Based on the previous hypotheses and results on the general importance of heterochromatin organization on genome functions in particular, the configurations of these organizational units (EC represented by H3K4me3-positive regions, HC represented by H3K9me3-positive regions, cohesins) are investigated in the cell nuclei of different cancer and non-cancerous cell types and under different anti-cancer treatments. Confocal microscopic images of the model cell systems were used and analyzed using analytical processes of quantification created in Fiji, an imaging tool box well established in different fields of science. Human fibroblasts, breast cancer and glioblastoma cells as well as murine embryonal terato-carcinoma cells were used as these cell models and compared according to the different parameters of spatial arrangements. In addition, proliferating, quiescent and from the quiescent state reactivated fibroblasts were analyzed. In some selected cases, the cells were treated with X-rays or azacitidine. Heterogeneous results were obtained by the analyses of the configurations of the three different organizational units: granulation and a loss of H3K4me3-positive regions (EC) occurred after irradiation with 4 Gy or azacitidine treatment. While fibroblasts responded to irradiation with an increase in cohesin and granulation, in breast cancer cells, it resulted in decreases in cohesin and changes in granulation. H3K9me3-positive regions (HC) in fibroblasts experienced increased granulation, whereas in breast cancer cells, the amount of such regions increased. After azacitidine treatment, murine stem cells showed losses of cohesin and granulation and an increase in the granulation of H3K9me3-positive regions. Fibroblasts that were irradiated with 2 Gy only showed irregularities in structural amounts and granulation. Quiescent fibroblasts contained less euchromatin-related H3K4me3-positive signals and cohesin levels as well as higher heterochromatin-related H3K9me3-positive signals than non-quiescent ones. In general, fibroblasts responded more intensely to X-ray irradiation than breast cancer cells. The results indicate the usefulness of model cell systems and show that, in general, characteristic differences initially existing in chromatin and cohesin organizations result in specific responses to anti-cancer treatment.

3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769000

RESUMO

Complex functioning of the genome in the cell nucleus is controlled at different levels: (a) the DNA base sequence containing all relevant inherited information; (b) epigenetic pathways consisting of protein interactions and feedback loops; (c) the genome architecture and organization activating or suppressing genetic interactions between different parts of the genome. Most research so far has shed light on the puzzle pieces at these levels. This article, however, attempts an integrative approach to genome expression regulation incorporating these different layers. Under environmental stress or during cell development, differentiation towards specialized cell types, or to dysfunctional tumor, the cell nucleus seems to react as a whole through coordinated changes at all levels of control. This implies the need for a framework in which biological, chemical, and physical manifestations can serve as a basis for a coherent theory of gene self-organization. An international symposium held at the Biomedical Research and Study Center in Riga, Latvia, on 25 July 2022 addressed novel aspects of the abovementioned topic. The present article reviews the most recent results and conclusions of the state-of-the-art research in this multidisciplinary field of science, which were delivered and discussed by scholars at the Riga symposium.


Assuntos
Núcleo Celular , Genoma , Núcleo Celular/metabolismo , Diferenciação Celular/genética
4.
Biophys J ; 120(4): 711-724, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33453273

RESUMO

Finding out how cells prepare for fate change during differentiation commitment was our task. To address whether the constitutive pericentromere-associated domains (PADs) may be involved, we used a model system with known transcriptome data, MCF-7 breast cancer cells treated with the ErbB3 ligand heregulin (HRG), which induces differentiation and is used in the therapy of cancer. PAD-repressive heterochromatin (H3K9me3), centromere-associated-protein-specific, and active euchromatin (H3K4me3) antibodies, real-time PCR, acridine orange DNA structural test (AOT), and microscopic image analysis were applied. We found a two-step DNA unfolding after 15-20 and 60 min of HRG treatment, respectively. This behavior was consistent with biphasic activation of the early response genes (c-fos - fosL1/myc) and the timing of two transcriptome avalanches reported in the literature. In control, the average number of PADs negatively correlated with their size by scale-free distribution, and centromere clustering in turn correlated with PAD size, both indicating that PADs may create and modulate a suprachromosomal network by fusing and splitting a constant proportion of the constitutive heterochromatin. By 15 min of HRG treatment, the bursting unraveling of PADs from the nucleolus boundary occurred, coinciding with the first step of H3K4me3 chromatin unfolding, confirmed by AOT. The second step after 60 min of HRG treatment was associated with transcription of long noncoding RNA from PADs and peaking of fosL1/c-myc response. We hypothesize that the bursting of PAD clusters under a critical silencing threshold pushes the first transcription avalanche, whereas the destruction of the PAD network enables genome rewiring needed for differentiation repatterning, mediated by early response bivalent genes.


Assuntos
Neoplasias da Mama , Neuregulina-1 , Neoplasias da Mama/genética , Centrômero , Heterocromatina , Humanos
5.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807337

RESUMO

In cancer therapy, the application of (fractionated) harsh radiation treatment is state of the art for many types of tumors. However, ionizing radiation is a "double-edged sword"-it can kill the tumor but can also promote the selection of radioresistant tumor cell clones or even initiate carcinogenesis in the normal irradiated tissue. Individualized radiotherapy would reduce these risks and boost the treatment, but its development requires a deep understanding of DNA damage and repair processes and the corresponding control mechanisms. DNA double strand breaks (DSBs) and their repair play a critical role in the cellular response to radiation. In previous years, it has become apparent that, beyond genetic and epigenetic determinants, the structural aspects of damaged chromatin (i.e., not only of DSBs themselves but also of the whole damage-surrounding chromatin domains) form another layer of complex DSB regulation. In the present article, we summarize the application of super-resolution single molecule localization microscopy (SMLM) for investigations of these structural aspects with emphasis on the relationship between the nano-architecture of radiation-induced repair foci (IRIFs), represented here by γH2AX foci, and their chromatin environment. Using irradiated HeLa cell cultures as an example, we show repair-dependent rearrangements of damaged chromatin and analyze the architecture of γH2AX repair clusters according to topological similarities. Although HeLa cells are known to have highly aberrant genomes, the topological similarity of γH2AX was high, indicating a functional, presumptively genome type-independent relevance of structural aspects in DSB repair. Remarkably, nano-scaled chromatin rearrangements during repair depended both on the chromatin domain type and the treatment. Based on these results, we demonstrate how the nano-architecture and topology of IRIFs and chromatin can be determined, point to the methodological relevance of SMLM, and discuss the consequences of the observed phenomena for the DSB repair network regulation or, for instance, radiation treatment outcomes.


Assuntos
Cromatina/genética , Dano ao DNA/genética , Neoplasias/genética , Linhagem Celular Tumoral , Cromatina/ultraestrutura , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Células HeLa , Humanos , Microscopia/métodos , Radiação Ionizante , Imagem Individual de Molécula/métodos
6.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360944

RESUMO

Endothelial and epithelial barrier function is crucial for the maintenance of physiological processes. The barrier paracellular permeability depends on the composition and spatial distribution of the cell-to-cell tight junctions (TJ). Here, we provide an experimental workflow that yields several layers of physiological data in the setting of a single endothelial cell monolayer. Human umbilical vein endothelial cells were grown on Transwell filters. Transendothelial electrical resistance (TER) and 10 kDa FITC dextran flux were measured using Alanyl-Glutamine (AlaGln) as a paracellular barrier modulator. Single monolayers were immunolabelled for Zonula Occludens-1 (ZO-1) and Claudin-5 (CLDN5) and used for automated immunofluorescence imaging. Finally, the same monolayers were used for single molecule localization microscopy (SMLM) of ZO-1 and CLDN5 at the nanoscale for spatial clustering analysis. The TER increased and the paracellular dextran flux decreased after the application of AlaGln and these functional changes of the monolayer were mediated by an increase in the ZO-1 and CLDN5 abundance in the cell-cell interface. At the nanoscale level, the functional and protein abundance data were accompanied by non-random increased clustering of CLDN5. Our experimental workflow provides multiple data from a single monolayer and has wide applicability in the setting of paracellular studies in endothelia and epithelia.


Assuntos
Permeabilidade Capilar , Junções Íntimas/metabolismo , Claudina-5/metabolismo , Dextranos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteína da Zônula de Oclusão-1/metabolismo
7.
Harefuah ; 160(4): 221-225, 2021 Apr.
Artigo em Hebraico | MEDLINE | ID: mdl-33899370

RESUMO

INTRODUCTION: This is a case study of a thirty-five year old woman with a past medical history of anxiety disorder and hypertension which has been elevated up to 180/100 mmHg during the previous year. She had no cardiovascular risk factors or family history of hypertension. Her high blood pressure was initially attributed to emotional stress, however, she was later referred for additional evaluation for secondary causes of hypertension. Her lab test results demonstrated significantly elevated plasma aldosterone levels and suppressed renin levels. A computed tomography scan demonstrated a left adrenal mass consistent with adrenal adenoma, with a normal adrenal gland on the right. Immediately after left adrenalectomy, plasma aldosterone level normalized and blood pressure was controlled with only minimal pharmacotherapy. Approximately 10 days post-surgery, her blood pressure values were measured in a range of 125/90 and anxiety significantly improved, under treatment only with 12.5mg Atenolol.


Assuntos
Neoplasias das Glândulas Suprarrenais , Adenoma Adrenocortical , Hiperaldosteronismo , Hipertensão , Neoplasias das Glândulas Suprarrenais/cirurgia , Adrenalectomia , Adenoma Adrenocortical/cirurgia , Adulto , Aldosterona , Transtornos de Ansiedade , Feminino , Humanos , Hiperaldosteronismo/complicações , Hiperaldosteronismo/diagnóstico , Hipertensão/diagnóstico , Hipertensão/etiologia
8.
Small ; 16(1): e1904251, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805220

RESUMO

Responsive materials with birefringent optical properties have been exploited for the manipulation of light in several modern electronic devices. While electrical fields are often utilized to achieve optical modulation, magnetic stimuli may offer an enticing complementary approach for controlling and manipulating light remotely. Here, the synthesis and characterization of magnetically responsive birefringent microparticles with unusual magneto-optical properties are reported. These functional microparticles are prepared via a microfluidic emulsification process, in which water-based droplets are generated in a flow-focusing device and stretched into anisotropic shapes before conversion into particles via photopolymerization. Birefringence properties are achieved by aligning cellulose nanocrystals within the microparticles during droplet stretching, whereas magnetic responsiveness results from the addition of superparamagnetic nanoparticles to the initial droplet template. When suspended in a fluid, the microparticles can be controllably manipulated via an external magnetic field to result in unique magneto-optical coupling effects. Using a remotely actuated magnetic field coupled to a polarized optical microscope, these microparticles can be employed to convert magnetic into optical signals or to estimate the viscosity of the suspending fluid through magnetically driven microrheology.

9.
Cas Lek Cesk ; 159(7-8): 286-297, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33445935

RESUMO

The present work introduces new findings about the influence of different radiation types on the cells, with the concern on the micro- and nanodosimetric aspects of chromatin damage. Emphasized is the relationship between the physical parameters of the incident radiation (g-rays, protons and high-LET heavy ions), character of chromatin damage, ability of cells to repair and survive DNA damage, and risk of genetic changes. While confirming a positive correlation between the LET of ionizing radiation, complexity of induced DNA double-strand breaks (DSB), and biological effectiveness (RBE) of radiation, at the same time, we show that our understanding of this relationship is only incomplete. Our discovery that various accelerated ions with similar LET can damage DNA in different ways and kill cells with unequal efficiency, could serve as an example. In addition, many aspects of DSB repair remain to be explained, for instance, how the cell activates the particular repair pathway at sites of individual DSBs, and how it depends on the radiation used and the chromatin architecture. The discussed results may be important, above all, for newly developing hadron therapy and in the context of manned interstellar flights planning. From the methodological point of view, we point to a tremendous progress in the field of optical microscopy and its research applications. In more detail, we introduce single-molecule localization microscopy (SMLM).


Assuntos
Quebras de DNA de Cadeia Dupla , Microscopia , Dano ao DNA , Humanos , Radiação Ionizante
10.
Int J Mol Sci ; 20(3)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704035

RESUMO

From the very beginnings of radiotherapy, a crucial question persists with how to target the radiation effectiveness into the tumor while preserving surrounding tissues as undamaged as possible. One promising approach is to selectively pre-sensitize tumor cells by metallic nanoparticles. However, though the "physics" behind nanoparticle-mediated radio-interaction has been well elaborated, practical applications in medicine remain challenging and often disappointing because of limited knowledge on biological mechanisms leading to cell damage enhancement and eventually cell death. In the present study, we analyzed the influence of different nanoparticle materials (platinum (Pt), and gold (Au)), cancer cell types (HeLa, U87, and SKBr3), and doses (up to 4 Gy) of low-Linear Energy Transfer (LET) ionizing radiation (γ- and X-rays) on the extent, complexity and reparability of radiation-induced γH2AX + 53BP1 foci, the markers of double stand breaks (DSBs). Firstly, we sensitively compared the focus presence in nuclei during a long period of time post-irradiation (24 h) in spatially (three-dimensionally, 3D) fixed cells incubated and non-incubated with Pt nanoparticles by means of high-resolution immunofluorescence confocal microscopy. The data were compared with our preliminary results obtained for Au nanoparticles and recently published results for gadolinium (Gd) nanoparticles of approximately the same size (2⁻3 nm). Next, we introduced a novel super-resolution approach-single molecule localization microscopy (SMLM)-to study the internal structure of the repair foci. In these experiments, 10 nm Au nanoparticles were used that could be also visualized by SMLM. Altogether, the data show that different nanoparticles may or may not enhance radiation damage to DNA, so multi-parameter effects have to be considered to better interpret the radiosensitization. Based on these findings, we discussed on conclusions and contradictions related to the effectiveness and presumptive mechanisms of the cell radiosensitization by nanoparticles. We also demonstrate that SMLM offers new perspectives to study internal structures of repair foci with the goal to better evaluate potential differences in DNA damage patterns.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Dano ao DNA/efeitos da radiação , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Linhagem Celular Tumoral , Gadolínio/química , Ouro/química , Células HeLa , Humanos , Microscopia Confocal
11.
Int J Mol Sci ; 19(8)2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072594

RESUMO

DNA double strand breaks (DSB) are the most severe damages in chromatin induced by ionizing radiation. In response to such environmentally determined stress situations, cells have developed repair mechanisms. Although many investigations have contributed to a detailed understanding of repair processes, e.g., homologous recombination repair or non-homologous end-joining, the question is not sufficiently answered, how a cell decides to apply a certain repair process at a certain damage site, since all different repair pathways could simultaneously occur in the same cell nucleus. One of the first processes after DSB induction is phosphorylation of the histone variant H2AX to γH2AX in the given surroundings of the damaged locus. Since the spatial organization of chromatin is not random, it may be conclusive that the spatial organization of γH2AX foci is also not random, and rather, contributes to accessibility of special repair proteins to the damaged site, and thus, to the following repair pathway at this given site. The aim of this article is to demonstrate a new approach to analyze repair foci by their topology in order to obtain a cell independent method of categorization. During the last decade, novel super-resolution fluorescence light microscopic techniques have enabled new insights into genome structure and spatial organization on the nano-scale in the order of 10 nm. One of these techniques is single molecule localization microscopy (SMLM) with which the spatial coordinates of single fluorescence molecules can precisely be determined and density and distance distributions can be calculated. This method is an appropriate tool to quantify complex changes of chromatin and to describe repair foci on the single molecule level. Based on the pointillist information obtained by SMLM from specifically labeled heterochromatin and γH2AX foci reflecting the chromatin morphology and repair foci topology, we have developed a new analytical methodology of foci or foci cluster characterization, respectively, by means of persistence homology. This method allows, for the first time, a cell independent comparison of two point distributions (here the point distributions of two γH2AX clusters) with each other of a selected ensample and to give a mathematical measure of their similarity. In order to demonstrate the feasibility of this approach, cells were irradiated by low LET (linear energy transfer) radiation with different doses and the heterochromatin and γH2AX foci were fluorescently labeled by antibodies for SMLM. By means of our new analysis method, we were able to show that the topology of clusters of γH2AX foci can be categorized depending on the distance to heterochromatin. This method opens up new possibilities to categorize spatial organization of point patterns by parameterization of topological similarity.


Assuntos
Histonas/análise , Microscopia de Fluorescência/métodos , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Heterocromatina/química , Heterocromatina/genética , Histonas/genética , Humanos , Família Multigênica , Fosforilação
12.
Int J Mol Sci ; 19(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469529

RESUMO

DNA double stranded breaks (DSBs) are the most serious type of lesions introduced into chromatin by ionizing radiation. During DSB repair, cells recruit different proteins to the damaged sites in a manner dependent on local chromatin structure, DSB location in the nucleus, and the repair pathway entered. 53BP1 is one of the important players participating in repair pathway decision of the cell. Although many molecular biology details have been investigated, the architecture of 53BP1 repair foci and its development during the post-irradiation time, especially the period of protein recruitment, remains to be elucidated. Super-resolution light microscopy is a powerful new tool to approach such studies in 3D-conserved cell nuclei. Recently, we demonstrated the applicability of single molecule localization microscopy (SMLM) as one of these highly resolving methods for analyses of dynamic repair protein distribution and repair focus internal nano-architecture in intact cell nuclei. In the present study, we focused our investigation on 53BP1 foci in differently radio-resistant cell types, moderately radio-resistant neonatal human dermal fibroblasts (NHDF) and highly radio-resistant U87 glioblastoma cells, exposed to high-LET 15N-ion radiation. At given time points up to 24 h post irradiation with doses of 1.3 Gy and 4.0 Gy, the coordinates and spatial distribution of fluorescently tagged 53BP1 molecules was quantitatively evaluated at the resolution of 10⁻20 nm. Clusters of these tags were determined as sub-units of repair foci according to SMLM parameters. The formation and relaxation of such clusters was studied. The higher dose generated sufficient numbers of DNA breaks to compare the post-irradiation dynamics of 53BP1 during DSB processing for the cell types studied. A perpendicular (90°) irradiation scheme was used with the 4.0 Gy dose to achieve better separation of a relatively high number of particle tracks typically crossing each nucleus. For analyses along ion-tracks, the dose was reduced to 1.3 Gy and applied in combination with a sharp angle irradiation (10° relative to the cell plane). The results reveal a higher ratio of 53BP1 proteins recruited into SMLM defined clusters in fibroblasts as compared to U87 cells. Moreover, the speed of foci and thus cluster formation and relaxation also differed for the cell types. In both NHDF and U87 cells, a certain number of the detected and functionally relevant clusters remained persistent even 24 h post irradiation; however, the number of these clusters again varied for the cell types. Altogether, our findings indicate that repair cluster formation as determined by SMLM and the relaxation (i.e., the remaining 53BP1 tags no longer fulfill the cluster definition) is cell type dependent and may be functionally explained and correlated to cell specific radio-sensitivity. The present study demonstrates that SMLM is a highly appropriate method for investigations of spatiotemporal protein organization in cell nuclei and how it influences the cell decision for a particular repair pathway at a given DSB site.


Assuntos
Reparo de DNA por Recombinação , Imagem Individual de Molécula/métodos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Microscopia Confocal/métodos , Transporte Proteico
13.
Mol Carcinog ; 56(8): 1935-1944, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28345808

RESUMO

Development of spontaneous melanoma in Xiphophorus interspecies backcross hybrid progeny, (X. hellerii × [X. maculatus Jp 163 A × X. hellerii]) is due to Mendelian segregation of a oncogene (xmrk) and a molecularly uncharacterized locus, called R(Diff), on LG5. R(Diff) is thought to suppresses the activity of xmrk in healthy X. maculatus Jp 163 A parental species that rarely develop melanoma. To better understand the molecular genetics of R(Diff), we utilized RNA-Seq to study allele-specific gene expression of spontaneous melanoma tumors and corresponding normal skin samples derived from 15 first generation backcross (BC1 ) hybrids and 13 fifth generation (BC5 ) hybrids. Allele-specific expression was determined for all genes and assigned to parental allele inheritance for each backcross hybrid individual. Results showed that genes residing in a 5.81 Mbp region on LG5 were exclusively expressed from the X. hellerii alleles in tumor-bearing BC1 hybrids. This observation indicates this region is consistently homozygous for X. hellerii alleles in tumor bearing animals, and therefore defines this region to be the R(Diff) locus. The R(Diff) locus harbors 164 gene models and includes the previously characterized R(Diff) candidate, cdkn2x. Twenty-one genes in the R(Diff) region show differential expression in the tumor samples compared to normal skin tissue. These results further characterize the R(Diff) locus and suggest tumor suppression may require a multigenic region rather than a single gene variant. Differences in gene expression between tumor and normal skin tissue in this region may indicate interactions among several genes are required for backcross hybrid melanoma development.


Assuntos
Ciprinodontiformes/genética , Regulação Neoplásica da Expressão Gênica , Melanoma Experimental/genética , Neoplasias Cutâneas/genética , Alelos , Animais , Cruzamentos Genéticos , Feminino , Proteínas de Peixes/genética , Loci Gênicos , Hibridização Genética , Masculino , Melanoma Experimental/patologia , Receptores Proteína Tirosina Quinases/genética , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/patologia
14.
Exp Cell Res ; 345(1): 51-9, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27237093

RESUMO

Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes) or TINA-DNA (Twisted Intercalating Nucleic Acids). Gene targets can be specifically labelled with at least about 20 probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3d-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy.


Assuntos
Núcleo Celular/metabolismo , Técnicas de Química Combinatória/métodos , Simulação por Computador , Hibridização in Situ Fluorescente/métodos , Sondas Moleculares/metabolismo , Ácidos Nucleicos Peptídicos/metabolismo , Coloração e Rotulagem , Cromossomos Humanos Par 17/metabolismo , Células Epiteliais/metabolismo , Humanos , Linfócitos/metabolismo
15.
Int J Mol Sci ; 18(8)2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28786938

RESUMO

Folate is an essential water-soluble vitamin in food and nutrition supplements. As a one-carbon source, it is involved in many central regulatory processes, such as DNA, RNA, and protein methylation as well as DNA synthesis and repair. Deficiency in folate is considered to be associated with an increased incidence of several malignancies, including cervical cancer that is etiologically linked to an infection with "high-risk" human papilloma viruses (HPV). However, it is still not known how a recommended increase in dietary folate after its deprivation affects the physiological status of cells. To study the impact of folate depletion and its subsequent reconstitution in single cells, we used quantitative chromatin conformation measurements obtained by super-resolution fluorescence microscopy, i.e., single molecule localization microscopy (SMLM). As a read-out, we examined the levels and the (re)positioning of γ-H2AX tags and histone H3K9me3 heterochromatin tags after immunostaining in three-dimensional (3D)-conserved cell nuclei. As model, we used HPV16 positive immortalized human keratinocytes that were cultivated under normal, folate deficient, and reconstituted conditions for different periods of time. The results were compared to cells continuously cultivated in standard folate medium. After 13 weeks in low folate, an increase in the phosphorylation of the histone H2AX was noted, indicative of an accumulation of DNA double strand breaks. DNA repair activity represented by the formation of those γ-H2AX clusters was maintained during the following 15 weeks of examination. However, the clustered arrangements of tags appeared to relax in a time-dependent manner. Parallel to the repair activity, the chromatin methylation activity increased as detected by H3K9me3 tags. The progress of DNA double strand repair was accompanied by a reduction of the detected nucleosome density around the γ-H2AX clusters, suggesting a shift from hetero- to euchromatin to allow access to the repair machinery. In conclusion, these data demonstrated a folate-dependent repair activity and chromatin re-organization on the SMLM nanoscale level. This offers new opportunities to further investigate folate-induced chromatin re-organization and the associated mechanisms.


Assuntos
Deficiência de Ácido Fólico/metabolismo , Ácido Fólico/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Microscopia/métodos , Transporte Biológico , Linhagem Celular Transformada , Imunofluorescência , Humanos , Queratinócitos , Microscopia de Fluorescência
16.
Int J Mol Sci ; 18(2)2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28208769

RESUMO

In cancer, vulnerable breast epithelium malignance tendency correlates with number and activation of ErbB receptor tyrosine kinases. In the presented work, we observe ErbB receptors activated by irradiation-induced DNA injury or neuregulin- 1 ß application, or alternatively, attenuated by a therapeutic antibody using high resolution fluorescence localization microscopy. The gap junction turnover coinciding with ErbB receptor activation and co-transport is simultaneously recorded. DNA injury caused by 4 Gray of 6 MeV photon γ -irradiation or alternatively neuregulin- 1 ß application mobilized ErbB receptors in a nucleograde fashion-a process attenuated by trastuzumab antibody application. This was accompanied by increased receptor density, indicating packing into transport units. Factors mobilizing ErbB receptors also mobilized plasma membrane resident gap junction channels. The time course of ErbB receptor activation and gap junction mobilization recapitulates the time course of non-homologous end-joining DNA repair. We explain our findings under terms of DNA injury-induced membrane receptor tyrosine kinase activation and retrograde trafficking. In addition, we interpret the phenomenon of retrograde co-trafficking of gap junction connexons stimulated by ErbB receptor activation.


Assuntos
Epitélio/metabolismo , Junções Comunicantes/metabolismo , Glândulas Mamárias Humanas/metabolismo , Receptor ErbB-2/metabolismo , Antineoplásicos/farmacologia , Conexina 43/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/patologia , Epitélio/efeitos da radiação , Humanos , Glândulas Mamárias Humanas/efeitos dos fármacos , Glândulas Mamárias Humanas/patologia , Glândulas Mamárias Humanas/efeitos da radiação , Microscopia Confocal , Neuregulina-1/metabolismo , Ligação Proteica , Multimerização Proteica , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-3/metabolismo , Trastuzumab/farmacologia
17.
Int J Mol Sci ; 18(5)2017 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-28481278

RESUMO

Immunostaining and fluorescence in situ hybridization (FISH) are well established methods for specific labelling of chromatin in the cell nucleus. COMBO-FISH (combinatorial oligonucleotide fluorescence in situ hybridization) is a FISH method using computer designed oligonucleotide probes specifically co-localizing at given target sites. In combination with super resolution microscopy which achieves spatial resolution far beyond the Abbe Limit, it allows new insights into the nano-scaled structure and organization of the chromatin of the nucleus. To avoid nano-structural changes of the chromatin, the COMBO-FISH labelling protocol was optimized omitting heat treatment for denaturation of the target. As an example, this protocol was applied to ALU elements-dispersed short stretches of DNA which appear in different kinds in large numbers in primate genomes. These ALU elements seem to be involved in gene regulation, genomic diversity, disease induction, DNA repair, etc. By computer search, we developed a unique COMBO-FISH probe which specifically binds to ALU consensus elements and combined this DNA-DNA labelling procedure with heterochromatin immunostainings in formaldehyde-fixed cell specimens. By localization microscopy, the chromatin network-like arrangements of ALU oligonucleotide repeats and heterochromatin antibody labelling sites were simultaneously visualized and quantified. This novel approach which simultaneously combines COMBO-FISH and immunostaining was applied to chromatin analysis on the nanoscale after low-linear-energy-transfer (LET) radiation exposure at different doses. Dose-correlated curves were obtained from the amount of ALU representing signals, and the chromatin re-arrangements during DNA repair after irradiation were quantitatively studied on the nano-scale. Beyond applications in radiation research, the labelling strategy of immunostaining and COMBO-FISH with localization microscopy will also offer new potentials for analyses of subcellular elements in combination with other specific chromatin targets.


Assuntos
Elementos Alu , Núcleo Celular/ultraestrutura , Cromatina/química , Hibridização in Situ Fluorescente/métodos , Linhagem Celular Tumoral , Cromatina/ultraestrutura , Humanos , Hibridização in Situ Fluorescente/normas , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/normas
18.
Int J Mol Sci ; 18(10)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28956810

RESUMO

Understanding molecular interactions and regulatory mechanisms in tumor initiation, progression, and treatment response are key requirements towards advanced cancer diagnosis and novel treatment procedures in personalized medicine. Beyond decoding the gene expression, malfunctioning and cancer-related epigenetic pathways, investigations of the spatial receptor arrangements in membranes and genome organization in cell nuclei, on the nano-scale, contribute to elucidating complex molecular mechanisms in cells and tissues. By these means, the correlation between cell function and spatial organization of molecules or molecular complexes can be studied, with respect to carcinogenesis, tumor sensitivity or tumor resistance to anticancer therapies, like radiation or antibody treatment. Here, we present several new applications for bio-molecular nano-probes and super-resolution, laser fluorescence localization microscopy and their potential in life sciences, especially in biomedical and cancer research. By means of a tool-box of fluorescent antibodies, green fluorescent protein (GFP) tagging, or specific oligonucleotides, we present tumor relevant re-arrangements of Erb-receptors in membranes, spatial organization of Smad specific ubiquitin protein ligase 2 (Smurf2) in the cytosol, tumor cell characteristic heterochromatin organization, and molecular re-arrangements induced by radiation or antibody treatment. The main purpose of this article is to demonstrate how nano-scaled distance measurements between bio-molecules, tagged by appropriate nano-probes, can be applied to elucidate structures and conformations of molecular complexes which are characteristic of tumorigenesis and treatment responses. These applications open new avenues towards a better interpretation of the spatial organization and treatment responses of functionally relevant molecules, at the single cell level, in normal and cancer cells, offering new potentials for individualized medicine.


Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência/métodos , Imagem Molecular , Nanopartículas , Pesquisa , Biomarcadores , Linhagem Celular Tumoral , Expressão Gênica , Genes Reporter , Humanos , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Microscopia de Fluorescência/normas , Imagem Molecular/métodos , Nanotecnologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Resultado do Tratamento
19.
Biophys J ; 110(4): 947-53, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26910431

RESUMO

Gold nanoparticles (GNPs) enhance the damaging absorbance effects of high-energy photons in radiation therapy by increasing the emission of Auger-photoelectrons in the nm-µm range. It has been shown that the incorporation of GNPs has a significant effect on radiosensitivity of cells and their dose-dependent clonogenic survival. One major characteristic of GNPs is also their diameter-dependent cellular uptake and retention. In this article, we show by means of an established embodiment of localization microscopy, spectral position determination microscopy (SPDM), that imaging with nanometer resolution and systematic counting of GNPs becomes feasible, because optical absorption and plasmon resonance effects result in optical blinking of GNPs at a size-dependent wavelength. To quantify cellular uptake and retention or release, SPDM with GNPs that have diameters of 10 and 25 nm was performed after 2 h and after 18 h. The uptake of the GNPs in HeLa cells was either achieved via incubation or transfection via DNA labeling. On average, the uptake by incubation after 2 h was approximately double for 10 nm GNPs as compared to 25 nm GNPs. In contrast, the uptake of 25 nm GNPs by transfection was approximately four times higher after 2 h. The spectral characteristics of the fluorescence of the GNPs seem to be environment-dependent. In contrast to fluorescent dyes that show blinking characteristics due to reversible photobleaching, the blinking of GNPs seems to be stable for long periods of time, and this facilitates their use as an appropriate dye analog for SPDM imaging.


Assuntos
Ouro/química , Ouro/metabolismo , Nanopartículas Metálicas , Microscopia , Transporte Biológico , Células HeLa , Humanos , Tamanho da Partícula , Coloração e Rotulagem
20.
Clin Chem Lab Med ; 54(1): 45-53, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26124054

RESUMO

BACKGROUND: The study was conducted to evaluate the analytical and clinical performance of the VIDAS® 25-OH Vitamin D Total assay. The clinical performance of the assay was compared with four other immunoassays against the results of two different liquid chromatography/mass spectrometry methods (LC-MS/MS) standardized to NIST reference materials. METHODS: VIDAS® 25-OH Vitamin D Total assay precision, linearity, detection limits and sample matrix comparison were assessed following CLSI guidelines. For method comparison, a total of 150 serum samples ranging from 7 to 92 ng/mL were analyzed by all the methods. Correlation was studied using Passing-Bablok regression and Bland-Altman analysis. The concordance correlation coefficient (CCC) was calculated to evaluate agreement between immunoassays and the reference LC-MS/MS method. In addition, samples containing endogenous 25(OH)D2 were used to assess each immunoassay's ability to detect this analyte. Pregnancy and hemodialysis samples were used to the study the effect of vitamin D binding protein (DBP) concentration over VIDAS® assay performance. RESULTS: The VIDAS® 25-OH Vitamin D Total assay showed excellent correlation to the LC-MS/MS results (y=1.01x+0.22 ng/mL, r=0.93), as obtained from two different sites and distinct LC-MS/MS methods. The limit of quantification was determined at 8.1 ng/mL. Cross-reactivity for 25(OH)D2 was over 80%. At concentrations of 10.5, 26 and 65.1 ng/mL, within-run CVs were 7.9%, 3.6% and 1.7%, while total CVs (between runs, calibrations, lots and instruments) were 16.0%, 4.5% and 2.8%. The VIDAS® performance was not influenced by altered DBP levels, though under-recovery of 25(OH)D as compared to LC-MS/MS was observed for hemodialysis samples. CONCLUSIONS: The VIDAS® 25-OH Vitamin D Total assay is therefore considered suitable for assessment of vitamin D status in clinical routine.


Assuntos
Cromatografia Líquida/métodos , Imunoensaio/métodos , Espectrometria de Massas em Tandem/métodos , Vitamina D/análogos & derivados , Humanos , Vitamina D/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA